cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239001 Irregular triangular array read by rows: row n gives a list of the partitions of n into Fibonacci numbers.

This page as a plain text file.
%I A239001 #22 Dec 13 2015 01:13:30
%S A239001 1,2,1,1,3,2,1,1,1,1,3,1,2,2,2,1,1,1,1,1,1,5,3,2,3,1,1,2,2,1,2,1,1,1,
%T A239001 1,1,1,1,1,5,1,3,3,3,2,1,3,1,1,1,2,2,2,2,2,1,1,2,1,1,1,1,1,1,1,1,1,1,
%U A239001 5,2,5,1,1,3,3,1,3,2,2,3,2,1,1,3,1,1
%N A239001 Irregular triangular array read by rows: row n gives a list of the partitions of n into Fibonacci numbers.
%C A239001 The number of partitions represented in row n is A003107(n).
%C A239001 The parts of a partition are nonincreasing and the order of the partitions is anti-lexicographic. As parts one uses A000045(n), n >= 2. - _Wolfdieter Lang_, Mar 17 2014
%e A239001 1
%e A239001 2 1 1
%e A239001 3 2 1 1 1 1
%e A239001 3 1 2 2 2 1 1 1 1 1 1
%e A239001 5 3 2 3 1 1 2 2 1 2 1 1 1 1 1 1 1 1
%e A239001 Row 5 represents these six partitions: 5, 32, 311, 221, 2111, 11111.
%e A239001 From _Wolfdieter Lang_, Mar 17 2014: (Start)
%e A239001 The array with separated partitions begins:
%e A239001 n\k   1      2      3        4        5          6          7            8             9             10 ...
%e A239001 1:    1
%e A239001 2:    2    1,1
%e A239001 3:    3    2,1  1,1,1
%e A239001 4:  3,1    2,2  2,1,1  1,1,1,1
%e A239001 5:    5    3,2  3,1,1    2,2,1  2,1,1,1  1,1,1,1,1
%e A239001 6:  5,1    3,3  3,2,1  3,1,1,1    2,2,2    2,2,1,1  2,1,1,1,1  1,1,1,1,1,1
%e A239001 7:  5,2  5,1,1  3,3,1    3,2,2  3,2,1,1  3,1,1,1,1    2,2,2,1    2,2,1,1,1   2,1,1,1,1,1  1,1,1,1,1,1,1
%e A239001 ...
%e A239001 Row n=8: 8  5,3  5,2,1  5,1,1,1  3,3,2  3,3,1,1  3,2,2,1  3,2,1,1,1  3,1,1,1,1,1   2,2,2,2   2,2,2,1,1
%e A239001   2,2,1,1,1,1  2,1,1,1,1,1,1  1,1,1,1,1,1,1,1;
%e A239001 Row n=9  8,1  5,3,1  5,2,2   5,2,1,1   5,1,1,1,1  3,3,3   3,3,2,1   3,3,1,1,1  3,2,2,2  3,2,2,1,1
%e A239001 3,2,1,1,1,1   3,1,1,1,1,1,1  2,2,2,2,1  2,2,2,1,1,1  2,2,1,1,1,1,1   2,1,1,1,1,1,1,1   1,1,1,1,1,1,1,1,1;
%e A239001 Row n=10: 8,2  8,1,1   5,5   5,3,2  5,3,1,1  5,2,2,1  5,2,1,1,1  5,1,1,1,1,1   3,3,3,1  3,3,2,2  3,3,2,1,1
%e A239001   3,3,1,1,1,1   3,2,2,2,1  3,2,2,1,1,1   3,2,1,1,1,1,1   3,1,1,1,1,1,1,1   2,2,2,2,2   2,2,2,2,1,1
%e A239001   2,2,2,1,1,1,1  2,2,1,1,1,1,1,1  2,1,1,1,1,1,1,1,1  1,1,1,1,1,1,1,1,1,1.
%e A239001 -----------------------------------------------------------------------------------------------------------
%e A239001 (End)
%t A239001 f = Table[Fibonacci[n], {n, 2, 60}]; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; s[n_, k_] := If[Union[f, DeleteDuplicates[p[n, k]]] == f, p[n, k], 0]; t[n_] := Table[s[n, k], {k, 1, PartitionsP[n]}]; TableForm[Table[DeleteCases[t[n], 0], {n, 1, 12}]] (* shows partitions *)
%t A239001 y = Flatten[Table[DeleteCases[t[n], 0], {n, 1, 12}]] (* A239001 *)
%t A239001 (* also *)
%t A239001 FibonacciQ[n_] := IntegerQ[Sqrt[5 n^2 + 4]] || IntegerQ[Sqrt[5 n^2 - 4]]; Attributes[FibonacciQ] = {Listable}; TableForm[t = Map[Select[IntegerPartitions[#], And @@ FibonacciQ[#] &] &, Range[0, 12]]]
%t A239001 Flatten[t] (* _Peter J. C. Moses_, Mar 24 2014 *)
%Y A239001 Cf. A003107, A000045, A239512.
%K A239001 nonn,tabf,easy
%O A239001 1,2
%A A239001 _Clark Kimberling_, Mar 08 2014