This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239001 #22 Dec 13 2015 01:13:30 %S A239001 1,2,1,1,3,2,1,1,1,1,3,1,2,2,2,1,1,1,1,1,1,5,3,2,3,1,1,2,2,1,2,1,1,1, %T A239001 1,1,1,1,1,5,1,3,3,3,2,1,3,1,1,1,2,2,2,2,2,1,1,2,1,1,1,1,1,1,1,1,1,1, %U A239001 5,2,5,1,1,3,3,1,3,2,2,3,2,1,1,3,1,1 %N A239001 Irregular triangular array read by rows: row n gives a list of the partitions of n into Fibonacci numbers. %C A239001 The number of partitions represented in row n is A003107(n). %C A239001 The parts of a partition are nonincreasing and the order of the partitions is anti-lexicographic. As parts one uses A000045(n), n >= 2. - _Wolfdieter Lang_, Mar 17 2014 %e A239001 1 %e A239001 2 1 1 %e A239001 3 2 1 1 1 1 %e A239001 3 1 2 2 2 1 1 1 1 1 1 %e A239001 5 3 2 3 1 1 2 2 1 2 1 1 1 1 1 1 1 1 %e A239001 Row 5 represents these six partitions: 5, 32, 311, 221, 2111, 11111. %e A239001 From _Wolfdieter Lang_, Mar 17 2014: (Start) %e A239001 The array with separated partitions begins: %e A239001 n\k 1 2 3 4 5 6 7 8 9 10 ... %e A239001 1: 1 %e A239001 2: 2 1,1 %e A239001 3: 3 2,1 1,1,1 %e A239001 4: 3,1 2,2 2,1,1 1,1,1,1 %e A239001 5: 5 3,2 3,1,1 2,2,1 2,1,1,1 1,1,1,1,1 %e A239001 6: 5,1 3,3 3,2,1 3,1,1,1 2,2,2 2,2,1,1 2,1,1,1,1 1,1,1,1,1,1 %e A239001 7: 5,2 5,1,1 3,3,1 3,2,2 3,2,1,1 3,1,1,1,1 2,2,2,1 2,2,1,1,1 2,1,1,1,1,1 1,1,1,1,1,1,1 %e A239001 ... %e A239001 Row n=8: 8 5,3 5,2,1 5,1,1,1 3,3,2 3,3,1,1 3,2,2,1 3,2,1,1,1 3,1,1,1,1,1 2,2,2,2 2,2,2,1,1 %e A239001 2,2,1,1,1,1 2,1,1,1,1,1,1 1,1,1,1,1,1,1,1; %e A239001 Row n=9 8,1 5,3,1 5,2,2 5,2,1,1 5,1,1,1,1 3,3,3 3,3,2,1 3,3,1,1,1 3,2,2,2 3,2,2,1,1 %e A239001 3,2,1,1,1,1 3,1,1,1,1,1,1 2,2,2,2,1 2,2,2,1,1,1 2,2,1,1,1,1,1 2,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1,1; %e A239001 Row n=10: 8,2 8,1,1 5,5 5,3,2 5,3,1,1 5,2,2,1 5,2,1,1,1 5,1,1,1,1,1 3,3,3,1 3,3,2,2 3,3,2,1,1 %e A239001 3,3,1,1,1,1 3,2,2,2,1 3,2,2,1,1,1 3,2,1,1,1,1,1 3,1,1,1,1,1,1,1 2,2,2,2,2 2,2,2,2,1,1 %e A239001 2,2,2,1,1,1,1 2,2,1,1,1,1,1,1 2,1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1,1,1. %e A239001 ----------------------------------------------------------------------------------------------------------- %e A239001 (End) %t A239001 f = Table[Fibonacci[n], {n, 2, 60}]; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; s[n_, k_] := If[Union[f, DeleteDuplicates[p[n, k]]] == f, p[n, k], 0]; t[n_] := Table[s[n, k], {k, 1, PartitionsP[n]}]; TableForm[Table[DeleteCases[t[n], 0], {n, 1, 12}]] (* shows partitions *) %t A239001 y = Flatten[Table[DeleteCases[t[n], 0], {n, 1, 12}]] (* A239001 *) %t A239001 (* also *) %t A239001 FibonacciQ[n_] := IntegerQ[Sqrt[5 n^2 + 4]] || IntegerQ[Sqrt[5 n^2 - 4]]; Attributes[FibonacciQ] = {Listable}; TableForm[t = Map[Select[IntegerPartitions[#], And @@ FibonacciQ[#] &] &, Range[0, 12]]] %t A239001 Flatten[t] (* _Peter J. C. Moses_, Mar 24 2014 *) %Y A239001 Cf. A003107, A000045, A239512. %K A239001 nonn,tabf,easy %O A239001 1,2 %A A239001 _Clark Kimberling_, Mar 08 2014