This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239003 #24 Mar 15 2014 22:07:55 %S A239003 1,0,0,1,0,1,0,0,2,0,0,1,0,2,0,0,2,0,1,0,0,3,0,0,2,0,2,0,0,3,0,0,1,0, %T A239003 3,0,0,3,0,2,0,0,4,0,0,2,0,3,0,0,3,0,1,0,0,4,0,0,3,0,3,0,0,5,0,0,2,0, %U A239003 4,0,0,4,0,2,0,0,5,0,0,3,0,3,0,0,4,0,0 %N A239003 Number of partitions of n into distinct Fibonacci numbers that are all greater than 2. %C A239003 a(n) > 0 if n+1 is a term of A003622; a(n) = 0 if n+1 is a term of A022342. %H A239003 Alois P. Heinz, <a href="/A239003/b239003.txt">Table of n, a(n) for n = 0..10946</a> %F A239003 G.f.: product(1 + x^F(j), j=4..infinity). - _Wolfdieter Lang_, Mar 15 2014 %e A239003 There is one partition for n=0, the empty partition. All parts are distinct, which means that there are no two parts that are equal. So a(0)=1. %p A239003 F:= combinat[fibonacci]: %p A239003 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<4, 0, %p A239003 b(n, i-1)+`if`(F(i)>n, 0, b(n-F(i), i-1)))) %p A239003 end: %p A239003 a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1) %p A239003 while F(j+1)<=n do od; b(n, j) %p A239003 end: %p A239003 seq(a(n), n=0..100); # _Alois P. Heinz_, Mar 15 2014 %t A239003 f = Table[Fibonacci[n], {n, 4, 75}]; b[n_] := SeriesCoefficient[Product[1 + x^f[[k]], {k, n}], {x, 0, n}]; u = Table[b[n], {n, 0, 60}] (* A239003 *) %t A239003 Flatten[Position[u, 0]] (* A022342 *) %Y A239003 Cf. A000201, A001950, A000045, A000119, A239002, A000009. %K A239003 nonn,easy,look %O A239003 0,9 %A A239003 _Clark Kimberling_, Mar 08 2014