cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239005 Signed version of the Seidel triangle for the Euler numbers, read by rows.

This page as a plain text file.
%I A239005 #62 Feb 22 2021 04:04:12
%S A239005 1,0,1,-1,-1,0,0,-1,-2,-2,5,5,4,2,0,0,5,10,14,16,16,-61,-61,-56,-46,
%T A239005 -32,-16,0,0,-61,-122,-178,-224,-256,-272,-272,1385,1385,1324,1202,
%U A239005 1024,800,544,272,0,0,1385,2770,4094,5296,6320,7120,7664,7936,7936
%N A239005 Signed version of the Seidel triangle for the Euler numbers, read by rows.
%H A239005 L. Seidel, <a href="http://publikationen.badw.de/de/003384831/pdf/CC%20BY">Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, Vol. 7 (1877), pp. 157-187; see Beilage 4 (p. 187).
%F A239005 a(n) = A057077(n)*A008280(n) by rows.
%F A239005 a(n) is the increasing antidiagonals of the difference table of A155585(n).
%F A239005 Central column of triangle: A099023(n).
%F A239005 Right main diagonal of triangle: A155585(n) (see A009006(n)).
%F A239005 Left main diagonal of triangle: A122045(n).
%F A239005 T(n,m) = Sum_{k=0..n} binomial(m,k)*Euler(n-m+k) for 0 <= m <= n. - _Vladimir Kruchinin_, Apr 06 2015 [The summation only needs to go from k=0 to k=m because of binomial(m,k).]
%F A239005 T(n,k) = (-1)^n*A236935(n-k,k) for 0 <= k <= n, where the latter is read as a square array. - _Petros Hadjicostas_, Feb 21 2021
%e A239005 The triangle T(n,k) begins:
%e A239005                       1
%e A239005                     0   1
%e A239005                  -1  -1   0
%e A239005                 0  -1  -2  -2
%e A239005               5   5   4   2   0
%e A239005              ...
%e A239005 The array read as a table, A(n,k) = T(n+k, k), starts:
%e A239005      1,    1,    0,   -2,    0,   16,    0, -272,    0, ...
%e A239005      0,   -1,   -2,    2,   16,  -16, -272,  272, ...
%e A239005     -1,   -1,    4,   14,  -32, -256,  544, ...
%e A239005      0,    5,   10,  -46, -224,  800, ...
%e A239005      5,    5,  -56, -178, 1024, ...
%e A239005      0,  -61, -122, 1202, ...
%e A239005    -61,  -61, 1324, ...
%e A239005      0, 1385, ...
%e A239005   1385, ...
%e A239005   ...
%e A239005 For the above table, we have A(n,k) = (-1)^(n+k)*A236935(n,k) for n, k >= 0. It has joint e.g.f. 2*exp(-x)/(1 + exp(-2*(x+y))). - _Petros Hadjicostas_, Feb 21 2021
%t A239005 t[0, 0] = 1; t[n_, m_] /; n<m || m<0 = 0; t[n_, m_] := t[n, m] = Sum[t[n-1, n-k], {k, m}]; Table[r = (-1)^Floor[n/2]*Table[t[n, m], {m, 0, n}]; If[EvenQ[n], Reverse[r], r], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Dec 30 2014 *)
%o A239005 (Maxima)
%o A239005 T(n,m):=sum(binomial(m,k)*euler(n-m+k),k,0,m); /* _Vladimir Kruchinin_, Apr 06 2015 */
%o A239005 (PARI) a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */
%o A239005 T(n, k) = (-1)^n*sum(i=0, k, (-1)^i*binomial(k, i)*a(n-i)) /* _Petros Hadjicostas_, Feb 21 2021 */
%o A239005 /* Second PARI program (same a(n) for A122045 as above) */
%o A239005 T(n, k) = sum(i=0, k, binomial(k, i)*a(n-k+i)) /* _Petros Hadjicostas_, Feb 21 2021 */
%Y A239005 Unsigned version is A008280.
%Y A239005 Cf. A008281, A099023, A108040, A122045, A155585, A236935.
%K A239005 sign,tabl
%O A239005 0,9
%A A239005 _Paul Curtz_, Mar 08 2014