A239008
Exponents m such that the decimal expansion of 3^m exhibits its first zero from the right later than any previous exponent.
Original entry on oeis.org
0, 3, 5, 7, 9, 11, 13, 19, 23, 24, 26, 28, 31, 34, 52, 65, 68, 136, 237, 4947, 7648, 42073, 50693, 52728, 395128, 2544983, 6013333, 76350564, 160451107, 641814146, 5291528429, 5856442430, 7307126644, 11577159988, 51444010646, 60457925746
Offset: 1
Obviously a(1) is 0. a(2) is 3 since this is the first exponent which yields a two-digit (nonzero) power of three.
Cf.
A000244,
A030700,
A020665,
A031142,
A239009,
A239010,
A239011,
A239012,
A239013,
A239014,
A239015.
-
f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[3, n, 10^500]]], 0, 1, 1][[1, 1]]; k = 1; mx = 0; lst = {}; While[k < 200000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst
A239009
Exponents m such that the decimal expansion of 4^m exhibits its first zero from the right later than any previous exponent.
Original entry on oeis.org
0, 2, 4, 7, 9, 12, 14, 16, 17, 23, 34, 36, 38, 43, 77, 88, 216, 350, 979, 24186, 28678, 134759, 205829, 374627, 2200364, 16625243, 29451854, 162613199, 8078176309, 9252290259, 17556077280, 49718535383, 51616746477, 54585993918
Offset: 1
Cf.
A000302,
A030701,
A020665,
A031142,
A239008,
A239010,
A239011,
A239012,
A239013,
A239014,
A239015.
-
f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[4, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 100000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst
A239010
Exponents m such that the decimal expansion of 5^m exhibits its first zero from the right later than any previous exponent.
Original entry on oeis.org
0, 2, 3, 5, 6, 9, 11, 15, 17, 18, 25, 26, 30, 33, 57, 58, 153, 1839, 3290, 4081, 16431, 577839, 2190974, 15167023, 23155442, 24477994, 36290003, 53687441, 62497567, 181850218, 790111167, 872257561, 4531889178, 26964400609, 32626158305, 268600630073
Offset: 1
Cf.
A000351,
A008839,
A020665,
A031142,
A239008,
A239009,
A239011,
A239012,
A239013,
A239014,
A239015.
-
f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[5, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 100000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst
A239012
Exponents m such that the decimal expansion of 7^m exhibits its first zero from the right later than any previous exponent.
Original entry on oeis.org
0, 2, 3, 6, 10, 11, 19, 35, 127, 131, 175, 207, 1235, 2470, 2651, 1241310, 1922910, 471056338, 1001431598, 1720335627, 4203146094, 5353516238, 21838571507, 25770284079, 40822793867
Offset: 1
Cf.
A000420,
A030703,
A020665,
A031142,
A239008,
A239009,
A239010,
A239011,
A239013,
A239014,
A239015.
-
f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[7, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 500000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst
A239013
Exponents m such that the decimal expansion of 8^m exhibits its first zero from the right later than any previous exponent.
Original entry on oeis.org
0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 17, 24, 27, 43, 144, 342, 633, 653, 2642, 6966, 16124, 84595, 225177, 4069057, 4890280, 6298187, 39573326, 99250579, 242281125, 1007075831, 4705063695, 5439666500, 5741331846, 6168193506, 9297912451, 34411164318, 36390662612, 265816303567
Offset: 1
Cf.
A001018,
A030704,
A020665,
A031142,
A239008,
A239009,
A239010,
A239011,
A239012,
A239014,
A239015.
-
f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[8, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 200000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst
A239014
Exponents m such that the decimal expansion of 9^m exhibits its first zero from the right later than any previous exponent.
Original entry on oeis.org
0, 2, 3, 4, 6, 7, 12, 13, 14, 17, 26, 34, 68, 406, 926, 2227, 3379, 3824, 26364, 197564, 9669757, 11470439, 15754533, 18945654, 25742286, 38175282, 237545304, 320907073, 2928221215, 3653563322, 5788579994, 25722005323, 30228962873, 137527721034, 217558664165, 523648850797
Offset: 1
Except for its second term,
A030705 is a subsequence.
-
f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[9, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 10000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst
A239015
Exponents m such that the decimal expansion of 11^m exhibits its first zero from the right later than any previous exponent.
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 36, 41, 366, 488, 4357, 69137, 89371, 143907, 542116, 2431369, 5877361, 8966861, 121915452, 123793821, 221788016, 709455085, 1571200127, 2640630712, 6637360862, 64994336645, 74770246842
Offset: 1
Illustration of initial term, with the 0 enclosed in parentheses:
n, position of 0, 11^a(n)
1, 2, (0)1
2, 3, (0)11
3, 4, (0)121
4, 5, (0)1331
5, 6, (0)14641
6, 7, (0)1771561
7, 8, (0)19487171
8, 9, (0)214358881
9, 10, (0)2357947691
10, 11, (0)3138428376721
11, 12, (0)34522712143931
12, 13, (0)379749833583241
13, 14, (0)4177248169415651
14, 15, (0)45949729863572161
15, 16, (0)5559917313492231481
16, 17, 3091268053287(0)672635673352936887453361
...
- _N. J. A. Sloane_, Jan 16 2020
Cf.
A001020,
A030706,
A020665,
A031142,
A239008,
A239009,
A239010,
A239011,
A239012,
A239013,
A239014.
-
f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[11, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 40000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst
Showing 1-7 of 7 results.
Comments