cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239018 Non-primitive words on {1,2,3}.

Original entry on oeis.org

11, 22, 33, 111, 222, 333, 1111, 1212, 1313, 2121, 2222, 2323, 3131, 3232, 3333, 11111, 22222, 33333, 111111, 112112, 113113, 121121, 121212, 122122, 123123, 131131, 131313, 132132, 133133, 211211, 212121, 212212, 213213, 221221, 222222, 223223, 231231, 232232, 232323, 233233, 311311, 312312, 313131, 313313
Offset: 1

Views

Author

M. F. Hasler, Mar 08 2014

Keywords

Comments

A word is non-primitive if it is a nontrivial power (i.e., repetition) of a subword. Therefore, for a prime number of digits, only the repdigit numbers are primitive. For words with 6 letters, there is also 112^2,113^2,121^2,12^3,... where w^n means n concatenations of w.
Lyndon words on {1,2,3}, A102660, are the terms in A007932 which are primitive (i.e., in the complement A239017 of this sequence) and not larger than any of their rotation, i.e., in A239016.
This is the complement of A239017 in A007932.
This is for {1,2,3} what A213972 is for {1,2} (and A213973 for {1,3}, A213974 for {2,3}).

Crossrefs

Programs

  • PARI
    for(n=1,7,p=vector(n,i,10^(n-i))~;forvec(d=vector(n,i,[1,3]),is_A239017(m=d*p)||print1(m",")))
    
  • Python
    from sympy import divisors
    from itertools import product
    def agentod(maxd):
        for d in range(2, maxd+1):
            divs, alld = divisors(d)[:-1], set()
            for div in divs:
                for t in product("123", repeat=div):
                    alld.add(int("".join(t*(d//div))))
            yield from sorted(alld)
    print([an for an in agentod(6)]) # Michael S. Branicky, Nov 22 2021