cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239019 Numbers which are not primitive words over the alphabet {0,...,9} (when written in base 10).

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 1010, 1111, 1212, 1313, 1414, 1515, 1616, 1717, 1818, 1919, 2020, 2121, 2222, 2323, 2424, 2525, 2626, 2727, 2828, 2929, 3030, 3131, 3232, 3333, 3434, 3535, 3636, 3737, 3838, 3939, 4040, 4141, 4242, 4343, 4444, 4545, 4646, 4747, 4848, 4949
Offset: 1

Views

Author

M. F. Hasler, Mar 08 2014

Keywords

Comments

A word is primitive iff it is not a power, i.e., repetition, of a subword. The only non-primitive words with a prime number of letters (here: digits) are the repdigit numbers. Thus, the first nontrivial terms of this sequence are 1010,1212,...
This sequence does *not* contain all non-primitive words over the alphabet {0,...,9}, namely, it excludes those which would be numbers with leading zeros: 00,000,0000,0101,0202,...
Lists of non-primitive words over a sub-alphabet of {1...9}, like A213972, A213973, A213974, A239018, ... are given as intersection of this with the set of all words in that alphabet, e.g., A007931, A032810, A032917, A007932, ...

Programs

  • Maple
    F:= proc(d) local p,R,q;
      R:= {seq(x*(10^d-1)/9, x=1..9)};
      for p in numtheory:-factorset(d) minus {d} do
        q:= d/p;
        R:= R union {seq(x*(10^d-1)/(10^q-1),x=10^(q-1)..10^q-1)};
      od:
      sort(convert(R,list))
    end proc:
    [seq(op(F(i)),i=2..4)]; # Robert Israel, Nov 14 2017
  • PARI
    is_A239019(n)=fordiv(#n=digits(n),L,L<#n && n==concat(Col(vector(#n/L,i,1)~*vecextract(n,2^L-1))~)&&return(1))