A239021 Smallest number k such that k*n +/- 1, k*n^2 +/- 1, and k*n^3 +/- 1 are three sets of twin primes. a(n) = 0 if no such number exists.
4, 105525, 10990, 15855, 344190, 2, 74580, 11580, 165592, 3759, 204918, 12670, 99090, 78, 3978, 11655, 8979180, 10605, 55188, 1221, 2, 23340, 4431420, 39158, 58464, 87318, 45420, 15780, 210, 91, 289422, 19740, 186410, 1293, 137664, 747, 443730, 94920, 278278
Offset: 1
Keywords
Examples
1*6 +/- 1 (5 and 7), 1*6^2 +/- 1 (35 and 37), and 1*6^3 +/- 1 (215 and 217) are not three sets of twin primes. However, 2*6 +/- 1 (11 and 13), 2*6^2 +/- 1 (71 and 73), and 2*6^3 +/- 1 (431 and 433) are three sets of twin primes. Thus, a(6) = 2.
Programs
-
Python
from sympy import isprime def b(n): for k in range(10**8): if isprime(k*n+1) and isprime(k*n-1) and isprime(k*(n**2)+1) and isprime(k*(n**2)-1) and isprime(k*(n**3)+1) and isprime(k*(n**3)-1): return k n = 1 while n < 100: print(b(n)) n += 1