cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239030 T(n,k)=Number of nXk 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of the elements above it, modulo 3.

This page as a plain text file.
%I A239030 #6 Jun 02 2025 09:23:13
%S A239030 1,1,2,1,3,2,1,4,4,4,1,5,7,11,4,1,6,11,28,16,8,1,7,16,59,54,43,8,1,8,
%T A239030 22,110,149,212,64,16,1,9,29,189,354,806,428,171,16,1,10,37,306,757,
%U A239030 2592,2195,1652,256,32,1,11,46,473,1495,7265,9319,11768,3410,683,32,1,12,56
%N A239030 T(n,k)=Number of nXk 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of the elements above it, modulo 3.
%C A239030 Table starts
%C A239030 ..1...1.....1......1.......1........1.........1.........1..........1
%C A239030 ..2...3.....4......5.......6........7.........8.........9.........10
%C A239030 ..2...4.....7.....11......16.......22........29........37.........46
%C A239030 ..4..11....28.....59.....110......189.......306.......473........704
%C A239030 ..4..16....54....149.....354......757......1495......2773.......4888
%C A239030 ..8..43...212....806....2592.....7265.....18362.....42809......93464
%C A239030 ..8..64...428...2195....9319....33699....107611....311585.....833304
%C A239030 .16.171..1652..11768...69288...339315...1435014...5388959...18371174
%C A239030 .16.256..3410..33417..265247..1719471...9453266..45358859..194626082
%C A239030 .32.683.13004.177087.1965398.17562449.131139508.838702960.4711005062
%H A239030 R. H. Hardin, <a href="/A239030/b239030.txt">Table of n, a(n) for n = 1..480</a>
%F A239030 Empirical for column k:
%F A239030 k=1: a(n) = 2*a(n-2)
%F A239030 k=2: a(n) = 5*a(n-2) -4*a(n-4)
%F A239030 k=3: a(n) = 17*a(n-2) -96*a(n-4) +210*a(n-6) -152*a(n-8)
%F A239030 k=4: [order 18]
%F A239030 k=5: [order 38]
%F A239030 k=6: [order 90]
%F A239030 Empirical for row n:
%F A239030 n=1: a(n) = 1
%F A239030 n=2: a(n) = n + 1
%F A239030 n=3: a(n) = (1/2)*n^2 + (1/2)*n + 1
%F A239030 n=4: a(n) = (1/12)*n^4 - (1/6)*n^3 + (47/12)*n^2 - (29/6)*n + 5
%F A239030 n=5: [polynomial of degree 6] for n>1
%F A239030 n=6: [polynomial of degree 9] for n>2
%F A239030 n=7: [polynomial of degree 12] for n>3
%e A239030 Some solutions for n=5 k=4
%e A239030 ..2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0
%e A239030 ..2..0..0..0....1..2..2..0....2..0..0..0....1..0..2..2....1..2..2..0
%e A239030 ..1..0..2..2....2..1..2..0....1..0..2..2....2..0..1..2....2..1..2..0
%e A239030 ..2..0..1..1....2..0..1..2....1..0..2..1....2..0..0..1....2..0..1..2
%e A239030 ..1..0..2..2....1..0..2..2....2..0..0..0....1..0..2..1....1..2..2..1
%Y A239030 Column 1 is A016116
%Y A239030 Row 2 is A000027(n+1)
%Y A239030 Row 3 is A000124
%K A239030 nonn,tabl
%O A239030 1,3
%A A239030 _R. H. Hardin_, Mar 09 2014