cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A239024 Number of n X 2 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of elements above it, modulo 3.

Original entry on oeis.org

1, 3, 4, 11, 16, 43, 64, 171, 256, 683, 1024, 2731, 4096, 10923, 16384, 43691, 65536, 174763, 262144, 699051, 1048576, 2796203, 4194304, 11184811, 16777216, 44739243, 67108864, 178956971, 268435456, 715827883, 1073741824, 2863311531, 4294967296
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2014

Keywords

Examples

			Some solutions for n=5:
..2..0....2..0....2..0....2..0....2..0....2..0....2..0....2..0....2..0....2..0
..1..0....2..0....2..0....2..0....1..2....1..0....1..0....2..0....2..0....1..0
..2..0....1..2....1..0....1..2....2..1....2..0....2..0....1..2....1..2....2..0
..2..0....2..1....1..0....1..2....1..0....1..0....1..2....2..1....1..2....2..0
..1..2....1..2....2..0....2..1....2..0....2..0....2..1....1..0....2..0....1..0
		

Crossrefs

Column 2 of A239030.

Formula

Empirical: a(n) = 5*a(n-2) - 4*a(n-4).
Conjectures from Colin Barker, Oct 25 2018: (Start)
G.f.: x*(1 + 3*x - x^2 - 4*x^3) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
a(n) = (2 + (-2)^n + 2*(-1)^n + 7*2^n) / 12.
(End)

A239025 Number of n X 3 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of elements above it, modulo 3.

Original entry on oeis.org

1, 4, 7, 28, 54, 212, 428, 1652, 3410, 13004, 27158, 102740, 215998, 812892, 1715842, 6435860, 13618366, 50970780, 108022954, 403751540, 856522206, 3198552316, 6789722794, 25340854612, 53813984430, 200773770908, 426474521338
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2014

Keywords

Examples

			Some solutions for n=5:
..2..0..0....2..0..0....2..0..0....2..0..0....2..0..0....2..0..0....2..0..0
..1..0..0....1..0..2....1..0..0....1..2..2....1..0..0....2..0..0....2..0..0
..2..0..0....2..0..1....2..0..0....2..1..1....2..0..0....1..0..2....1..0..0
..1..2..2....1..2..2....1..2..2....2..0..0....2..0..0....2..0..1....2..0..0
..2..1..1....2..1..2....2..1..2....1..0..2....1..2..2....1..0..0....1..0..2
		

Crossrefs

Column 3 of A239030.

Formula

Empirical: a(n) = 17*a(n-2) - 96*a(n-4) + 210*a(n-6) - 152*a(n-8).
Empirical g.f.: x*(1 + 4*x - 10*x^2 - 40*x^3 + 31*x^4 + 120*x^5 - 28*x^6 - 104*x^7) / (1 - 17*x^2 + 96*x^4 - 210*x^6 + 152*x^8). - Colin Barker, Oct 25 2018

A239026 Number of nX4 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of elements above it, modulo 3.

Original entry on oeis.org

1, 5, 11, 59, 149, 806, 2195, 11768, 33417, 177087, 514763, 2701462, 7959113, 41470771, 123166255, 638542081, 1905821801, 9846665639, 29480427979, 151961034078, 455874537477, 2346202859972, 7047642531511, 36233420401775
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2014

Keywords

Comments

Column 4 of A239030

Examples

			Some solutions for n=5
..2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0
..1..0..0..2....2..0..0..0....1..0..2..2....1..0..2..2....2..0..0..0
..2..0..0..1....1..0..0..0....2..0..1..2....2..0..1..2....1..2..2..0
..1..0..0..0....1..2..2..0....2..0..0..1....1..2..2..0....2..1..1..2
..2..0..0..0....2..1..1..0....1..2..2..1....2..1..2..0....1..0..0..2
		

Formula

Empirical: a(n) = 50*a(n-2) -1020*a(n-4) +11131*a(n-6) -71319*a(n-8) +275531*a(n-10) -629492*a(n-12) +789744*a(n-14) -456320*a(n-16) +76800*a(n-18)

A239027 Number of nX5 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of elements above it, modulo 3.

Original entry on oeis.org

1, 6, 16, 110, 354, 2592, 9319, 69288, 265247, 1965398, 7800825, 57331200, 232485057, 1695069696, 6964531270, 50452937884, 209015936546, 1506842267076, 6275879711407, 45084885342398, 188433761914537, 1350270184320046
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2014

Keywords

Comments

Column 5 of A239030

Examples

			Some solutions for n=5
..2..0..0..0..0....2..0..0..0..0....2..0..0..0..0....2..0..0..0..0
..1..0..0..2..2....1..0..0..2..2....1..2..2..0..0....1..0..2..2..0
..2..0..0..1..1....2..0..0..1..2....2..1..1..0..2....2..0..1..2..0
..2..0..0..0..0....1..2..2..0..0....2..0..0..0..1....2..0..0..1..2
..1..0..0..2..2....2..1..2..0..0....1..0..0..0..2....1..2..2..1..2
		

Formula

Empirical: a(n) = 167*a(n-2) -12737*a(n-4) +590522*a(n-6) -18674960*a(n-8) +428232709*a(n-10) -7384832953*a(n-12) +97981999331*a(n-14) -1014383126841*a(n-16) +8257937387592*a(n-18) -53002256526176*a(n-20) +267655608403835*a(n-22) -1056157718233604*a(n-24) +3216196113264380*a(n-26) -7411332048725488*a(n-28) +12543993016224416*a(n-30) -14892794784221696*a(n-32) +11503438838397440*a(n-34) -5030303892805632*a(n-36) +890642713919488*a(n-38)

A239028 Number of nX6 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of elements above it, modulo 3.

Original entry on oeis.org

1, 7, 22, 189, 757, 7265, 33699, 339315, 1719471, 17562449, 93885393, 958423704, 5294453737, 53749275243, 303098123295, 3057605672892, 17472132232105, 175268385351709, 1010298392497549, 10088889232010085, 58495304591252863
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2014

Keywords

Comments

Column 6 of A239030

Examples

			Some solutions for n=5
..2..0..0..0..0..0....2..0..0..0..0..0....2..0..0..0..0..0....2..0..0..0..0..0
..1..0..0..2..2..0....1..0..0..2..2..0....1..0..0..0..0..0....1..2..2..0..0..0
..2..0..0..1..1..2....2..0..0..1..2..0....2..0..0..0..0..0....2..1..1..2..2..0
..2..0..0..0..0..1....1..2..2..0..0..0....1..2..2..0..0..0....2..0..0..1..2..0
..1..0..0..2..2..0....2..1..2..0..0..0....2..1..1..0..0..2....1..0..0..0..0..0
		

Formula

Empirical recurrence of order 90 (see link above)

A239029 Number of nX7 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of elements above it, modulo 3.

Original entry on oeis.org

1, 8, 29, 306, 1495, 18362, 107611, 1435014, 9453266, 131139508, 930867565, 13097850256, 97472804219, 1373719026116, 10536457574723, 147977950815572, 1157525035823201, 16176954064274638, 128205153484308223
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2014

Keywords

Comments

Column 7 of A239030

Examples

			Some solutions for n=5
..2..0..0..0..0..0..0....2..0..0..0..0..0..0....2..0..0..0..0..0..0
..2..0..0..0..0..0..0....1..2..2..0..0..0..0....1..2..2..0..0..0..0
..1..0..2..2..0..0..0....2..1..1..0..2..2..0....2..1..2..0..0..0..0
..2..0..1..1..0..2..2....1..0..2..2..1..1..2....2..0..0..0..0..0..0
..1..0..0..2..2..1..1....2..0..1..1..0..0..2....1..0..0..0..0..0..0
		

A239031 Number of 4 X n 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of the elements above it, modulo 3.

Original entry on oeis.org

4, 11, 28, 59, 110, 189, 306, 473, 704, 1015, 1424, 1951, 2618, 3449, 4470, 5709, 7196, 8963, 11044, 13475, 16294, 19541, 23258, 27489, 32280, 37679, 43736, 50503, 58034, 66385, 75614, 85781, 96948, 109179, 122540, 137099, 152926, 170093, 188674
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2014

Keywords

Examples

			Some solutions for n=5:
..2..0..0..0..0....2..0..0..0..0....2..0..0..0..0....2..0..0..0..0
..2..0..0..0..0....1..0..2..2..0....1..0..0..0..2....2..0..0..0..0
..1..0..0..0..0....2..0..1..1..2....2..0..0..0..1....1..0..2..2..0
..1..0..0..0..2....1..2..2..0..1....1..0..0..0..2....2..0..1..2..0
		

Crossrefs

Row 4 of A239030.

Formula

Empirical: a(n) = (1/12)*n^4 - (1/6)*n^3 + (47/12)*n^2 - (29/6)*n + 5.
Conjectures from Colin Barker, Oct 25 2018: (Start)
G.f.: x*(4 - 9*x + 13*x^2 - 11*x^3 + 5*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A239032 Number of 5 X n 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of the elements above it, modulo 3.

Original entry on oeis.org

4, 16, 54, 149, 354, 757, 1495, 2773, 4888, 8258, 13456, 21249, 32642, 48927, 71737, 103105, 145528, 202036, 276266, 372541, 495954, 652457, 848955, 1093405, 1394920, 1763878, 2212036, 2752649, 3400594, 4172499, 5086877, 6164265, 7427368, 8901208
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2014

Keywords

Examples

			Some solutions for n=5:
..2..0..0..0..0....2..0..0..0..0....2..0..0..0..0....2..0..0..0..0
..2..0..0..0..0....2..0..0..0..0....1..0..2..2..0....2..0..0..0..0
..1..0..2..2..0....1..0..0..2..2....2..0..1..1..0....1..0..0..0..2
..2..0..1..1..0....1..2..2..1..2....2..0..0..0..0....1..2..2..0..1
..1..0..0..0..0....2..1..1..0..0....1..2..2..0..0....2..1..1..0..2
		

Crossrefs

Row 5 of A239030.

Formula

Empirical: a(n) = (1/144)*n^6 - (17/240)*n^5 + (169/144)*n^4 - (81/16)*n^3 + (1463/72)*n^2 - (1001/30)*n + 25 for n>1.
Conjectures from Colin Barker, Oct 25 2018: (Start)
G.f.: x*(4 - 12*x + 26*x^2 - 33*x^3 + 25*x^4 - 6*x^5 - 3*x^6 + 4*x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)

A239033 Number of 6 X n 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of the elements above it, modulo 3.

Original entry on oeis.org

8, 43, 212, 806, 2592, 7265, 18362, 42809, 93464, 193157, 380900, 721154, 1317296, 2330727, 4007402, 6713945, 10985936, 17591423, 27613220, 42554102, 64469600, 96133733, 141243690, 204670193, 292761032, 413706065, 577972820, 798822722
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2014

Keywords

Examples

			Some solutions for n=5:
..2..0..0..0..0....2..0..0..0..0....2..0..0..0..0....2..0..0..0..0
..2..0..0..0..0....1..0..0..2..2....2..0..0..0..0....2..0..0..0..0
..1..2..2..0..0....2..0..0..1..2....1..0..0..0..0....1..0..0..0..2
..2..1..1..2..2....2..0..0..0..0....2..0..0..0..0....1..2..2..0..1
..1..2..2..1..2....1..0..2..2..0....1..0..0..2..2....2..1..1..2..2
..1..2..1..0..0....1..2..1..2..1....1..0..0..2..1....1..0..2..1..2
		

Crossrefs

Row 6 of A239030.

Formula

Empirical: a(n) = (1/8640)*n^9 - (61/20160)*n^8 + (263/3360)*n^7 - (1439/1440)*n^6 + (29843/2880)*n^5 - (194227/2880)*n^4 + (668597/2160)*n^3 - (1477657/1680)*n^2 + (59263/42)*n - 943 for n>2.
Conjectures from Colin Barker, Oct 25 2018: (Start)
G.f.: x*(8 - 37*x + 142*x^2 - 339*x^3 + 592*x^4 - 811*x^5 + 996*x^6 - 1020*x^7 + 792*x^8 - 377*x^9 + 88*x^10 + 8*x^11) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>12.
(End)

A239034 Number of 7Xn 0..2 arrays with no element equal to the sum of elements to its left or one plus the sum of the elements above it, modulo 3.

Original entry on oeis.org

8, 64, 428, 2195, 9319, 33699, 107611, 311585, 833304, 2086074, 4936712, 11126665, 24022753, 49913047, 100179401, 194844297, 368222528, 677728244, 1217319704, 2137637135, 3675638019, 6197499195, 10259782783, 16695406105, 26732874536
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2014

Keywords

Comments

Row 7 of A239030

Examples

			Some solutions for n=5
..2..0..0..0..0....2..0..0..0..0....2..0..0..0..0....2..0..0..0..0
..2..0..0..0..0....1..2..2..0..0....1..2..2..0..0....2..0..0..0..0
..1..0..0..2..2....2..1..1..2..2....2..1..1..2..2....1..2..2..0..0
..2..0..0..1..2....1..0..0..2..2....1..2..2..1..2....2..1..1..2..2
..1..0..2..2..0....2..0..0..1..1....2..1..1..0..0....1..2..2..1..1
..1..0..2..1..0....2..0..0..1..1....2..0..0..0..0....1..2..2..0..0
..2..0..1..2..0....1..0..0..0..0....1..2..2..0..1....2..0..1..2..0
		

Formula

Empirical: a(n) = (1/1036800)*n^12 - (1961/39916800)*n^11 + (13339/7257600)*n^10 - (30521/725760)*n^9 + (583409/806400)*n^8 - (400873/44800)*n^7 + (86137751/1036800)*n^6 - (407381983/725760)*n^5 + (4957467353/1814400)*n^4 - (8367100109/907200)*n^3 + (515324983/25200)*n^2 - (185067023/6930)*n + 15601 for n>3
Showing 1-10 of 11 results. Next