cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239050 a(n) = 4*sigma(n).

This page as a plain text file.
%I A239050 #86 Feb 25 2025 21:01:32
%S A239050 4,12,16,28,24,48,32,60,52,72,48,112,56,96,96,124,72,156,80,168,128,
%T A239050 144,96,240,124,168,160,224,120,288,128,252,192,216,192,364,152,240,
%U A239050 224,360,168,384,176,336,312,288,192,496,228,372,288,392,216,480,288,480,320,360,240,672,248,384,416,508
%N A239050 a(n) = 4*sigma(n).
%C A239050 4 times the sum of divisors of n.
%C A239050 a(n) is also the total number of horizontal cells in the terraces of the n-th level of an irregular stepped pyramid (starting from the top) where the structure of every three-dimensional quadrant arises after the 90-degree zig-zag folding of every row of the diagram of the isosceles triangle A237593. The top of the pyramid is a square formed by four cells (see links and examples). - _Omar E. Pol_, Jul 04 2016
%H A239050 Antti Karttunen, <a href="/A239050/b239050.txt">Table of n, a(n) for n = 1..10000</a>
%H A239050 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr02.jpg">Diagram of the triangle before the 90-degree-zig-zag folding (rows: 1..28)</a>
%H A239050 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr01.jpg">Folding the first eight rows of triangle</a>
%H A239050 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A239050 a(n) = 4*A000203(n) = 2*A074400(n).
%F A239050 a(n) = A000203(n) + A272027(n). - _Omar E. Pol_, Jul 04 2016
%F A239050 Dirichlet g.f.: 4*zeta(s-1)*zeta(s). - _Ilya Gutkovskiy_, Jul 04 2016
%F A239050 Conjecture: a(n) = sigma(3*n) = A144613(n) iff n is not a multiple of 3. - _Omar E. Pol_, Oct 02 2018
%F A239050 The conjecture above is correct. Write n = 3^e*m, gcd(3, m) = 1, then sigma(3*n) = sigma(3^(e+1))*sigma(m) = ((3^(e+2) - 1)/2)*sigma(m) = ((3^(e+2) - 1)/(3^(e+1) - 1))*sigma(3^e*m), and (3^(e+2) - 1)/(3^(e+1) - 1) = 4 if and only if e = 0. - _Jianing Song_, Feb 03 2019
%e A239050 For n = 4 the sum of divisors of 4 is 1 + 2 + 4 = 7, so a(4) = 4*7 = 28.
%e A239050 For n = 5 the sum of divisors of 5 is 1 + 5 = 6, so a(5) = 4*6 = 24.
%e A239050 .
%e A239050 Illustration of initial terms:                                    _ _ _ _ _ _
%e A239050 .                                           _ _ _ _ _ _          |_|_|_|_|_|_|
%e A239050 .                           _ _ _ _       _|_|_|_|_|_|_|_     _ _|           |_ _
%e A239050 .             _ _ _ _     _|_|_|_|_|_    |_|_|       |_|_|   |_|               |_|
%e A239050 .     _ _    |_|_|_|_|   |_|       |_|   |_|           |_|   |_|               |_|
%e A239050 .    |_|_|   |_|   |_|   |_|       |_|   |_|           |_|   |_|               |_|
%e A239050 .    |_|_|   |_|_ _|_|   |_|       |_|   |_|           |_|   |_|               |_|
%e A239050 .            |_|_|_|_|   |_|_ _ _ _|_|   |_|_         _|_|   |_|               |_|
%e A239050 .                          |_|_|_|_|     |_|_|_ _ _ _|_|_|   |_|_             _|_|
%e A239050 .                                          |_|_|_|_|_|_|         |_ _ _ _ _ _|
%e A239050 .                                                                |_|_|_|_|_|_|
%e A239050 .
%e A239050 n:     1          2             3                4                     5
%e A239050 S(n):  1          3             4                7                     6
%e A239050 a(n):  4         12            16               28                    24
%e A239050 .
%e A239050 For n = 1..5, the figure n represents the reflection in the four quadrants of the symmetric representation of S(n) = sigma(n) = A000203(n). For more information see A237270 and A237593.
%e A239050 The diagram also represents the top view of the first four terraces of the stepped pyramid described in Comments section. - _Omar E. Pol_, Jul 04 2016
%p A239050 with(numtheory): seq(4*sigma(n), n=1..64); # _Omar E. Pol_, Jul 04 2016
%t A239050 Array[4 DivisorSigma[1, #] &, 64] (* _Michael De Vlieger_, Nov 16 2017 *)
%o A239050 (PARI) a(n) = 4 * sigma(n); \\ _Omar E. Pol_, Jul 04 2016
%o A239050 (Magma) [4*SumOfDivisors(n): n in [1..70]]; // _Vincenzo Librandi_, Jul 30 2019
%Y A239050 Alternating row sums of A239662.
%Y A239050 Partial sums give A243980.
%Y A239050 k times sigma(n), k=1..6: A000203, A074400, A272027, this sequence, A274535, A274536.
%Y A239050 k times sigma(n), k = 1..10: A000203, A074400, A272027, this sequence, A274535, A274536, A319527, A319528, A325299, A326122.
%Y A239050 Cf. A008438, A017113, A062731, A112610, A144613, A193553, A196020, A235791, A236104, A237270, A237593, A239052, A239053, A239660, A239662, A244050, A262626.
%K A239050 nonn,easy
%O A239050 1,1
%A A239050 _Omar E. Pol_, Mar 09 2014