A239052 Sum of divisors of 4*n-2.
3, 12, 18, 24, 39, 36, 42, 72, 54, 60, 96, 72, 93, 120, 90, 96, 144, 144, 114, 168, 126, 132, 234, 144, 171, 216, 162, 216, 240, 180, 186, 312, 252, 204, 288, 216, 222, 372, 288, 240, 363, 252, 324, 360, 270, 336, 384, 360, 294, 468, 306, 312, 576
Offset: 1
Examples
Illustration of initial terms: ------------------------------------------------------ . Branches of the spiral . in the second quadrant n a(n) ------------------------------------------------------ . . _ _ _ _ _ _ _ _ . | _ _ _ _ _ _ _| 4 24 . | | . 12 _| | . |_ _| _ _ _ _ _ _ . 12 _ _| | _ _ _ _ _| 3 18 . _ _ _| | 9 _| | . | _ _ _| 9 _|_ _| . | | _ _| | _ _ _ _ . | | | _ _| 12 _| _ _ _| 2 12 . | | | | _| | . | | | | | _ _| . | | | | | | 3 _ _ . | | | | | | | _| 1 3 . |_| |_| |_| |_| . For n = 4 the sum of divisors of 4*n-2 is 1 + 2 + 7 + 14 = A000203(14) = 24. On the other hand the parts of the symmetric representation of sigma(14) are [12, 12] and the sum of them is 12 + 12 = 24, equaling the sum of divisors of 14, so a(4) = 24.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSigma[1, 4*n - 2]; Array[a, 100] (* Amiram Eldar, Dec 17 2022 *)
Formula
a(n) = 3*A008438(n-1). - Joerg Arndt, Mar 09 2014
Sum_{k=1..n} a(k) = (3*Pi^2/8) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 17 2022
Comments