cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239053 Sum of divisors of 4*n-1.

This page as a plain text file.
%I A239053 #37 Dec 17 2022 04:23:18
%S A239053 4,8,12,24,20,24,40,32,48,56,44,48,72,72,60,104,68,72,124,80,84,120,
%T A239053 112,120,156,104,108,152,144,144,168,128,132,240,140,168,228,152,192,
%U A239053 216,164,168,260,248,180,248,216,192,336,200,240,312,212,264,296
%N A239053 Sum of divisors of 4*n-1.
%C A239053 Bisection of A008438.
%C A239053 a(n) is also the total number of cells in the n-th branch of the third quadrant of the spiral formed by the parts of the symmetric representation of sigma(4n-1), see example. For the quadrants 1, 2, 4 see A112610, A239052, A193553. The spiral has been obtained according to the following way: A196020 --> A236104 --> A235791 --> A237591 --> A237593 --> A237270.
%C A239053 We can find the spiral (mentioned above) on the terraces of the pyramid described in A244050. - _Omar E. Pol_, Dec 06 2016
%H A239053 Amiram Eldar, <a href="/A239053/b239053.txt">Table of n, a(n) for n = 1..10000</a>
%F A239053 a(n) = A000203(4n-1) = A000203(A004767(n-1)).
%F A239053 a(n) = 4*A097723(n-1). - _Joerg Arndt_, Mar 09 2014
%F A239053 Sum_{k=1..n} a(k) = (Pi^2/4) * n^2 + O(n*log(n)). - _Amiram Eldar_, Dec 17 2022
%e A239053 Illustration of initial terms:
%e A239053 -----------------------------------------------------
%e A239053 .        Branches of the spiral
%e A239053 .        in the third quadrant             n    a(n)
%e A239053 -----------------------------------------------------
%e A239053 .     _       _       _       _
%e A239053 .    | |     | |     | |     | |
%e A239053 .    | |     | |     | |     |_|_ _
%e A239053 .    | |     | |     | |    2  |_ _|       1      4
%e A239053 .    | |     | |     |_|_     2
%e A239053 .    | |     | |    4    |_
%e A239053 .    | |     |_|_ _        |_ _ _ _
%e A239053 .    | |    6      |_      |_ _ _ _|       2      8
%e A239053 .    |_|_ _ _        |_   4
%e A239053 .   8      | |_ _      |
%e A239053 .          |_    |     |_ _ _ _ _ _
%e A239053 .            |_  |_    |_ _ _ _ _ _|       3     12
%e A239053 .           8  |_ _|  6
%e A239053 .                  |
%e A239053 .                  |_ _ _ _ _ _ _ _
%e A239053 .                  |_ _ _ _ _ _ _ _|       4     24
%e A239053 .                 8
%e A239053 .
%e A239053 For n = 4 the sum of divisors of 4*n-1 is 1 + 3 + 5 + 15 = A000203(15) = 24. On the other hand the parts of the symmetric representation of sigma(15) are [8, 8, 8] and the sum of them is 8 + 8 + 8 = 24, equaling the sum of divisors of 15, so a(4) = 24.
%p A239053 A239053:=n->numtheory[sigma](4*n-1): seq(A239053(n), n=1..80); # _Wesley Ivan Hurt_, Dec 06 2016
%t A239053 DivisorSigma[1,4*Range[60]-1] (* _Harvey P. Dale_, Dec 06 2016 *)
%t A239053 Table[DivisorSigma[1, 4 n - 1], {n, 100}] (* _Vincenzo Librandi_, Dec 07 2016 *)
%o A239053 (Magma) [SumOfDivisors(4*n-1): n in [1..60]]; // _Vincenzo Librandi_, Dec 07 2016
%o A239053 (PARI) a(n) = sigma(4*n-1); \\ _Michel Marcus_, Dec 07 2016
%Y A239053 Cf. A000203, A004767, A008438, A062731, A074400, A112610, A193553, A196020, A235791, A236104, A237270, A237591, A237593, A239050, A239052, A244050, A245092, A262626.
%K A239053 nonn,easy
%O A239053 1,1
%A A239053 _Omar E. Pol_, Mar 09 2014