A239058 Numbers whose divisors all appear as a substring in their decimal expansion.
1, 11, 13, 17, 19, 31, 41, 61, 71, 101, 103, 107, 109, 113, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 241, 251, 271, 281, 311, 313, 317, 331, 401, 419, 421, 431, 461, 491, 521, 541, 571, 601, 613, 617, 619, 631, 641, 661, 691, 701, 719, 751, 761, 811, 821, 881, 911, 919, 941, 971
Offset: 1
Examples
All primes having the digit 1 (A208270) are in this sequence, because {1, p} are the only divisors of a prime p. The divisors of 125 are {1, 5, 25, 125}; it can be seen that all of them occur as a substring in 125, therefore 125 is in this sequence.
Links
Programs
-
PARI
is(n,d=vecextract(divisors(n),"^-1"))={ setminus(select(x->x<10,d),Set(digits(n)))&&return;!for(L=2,#Str(d[#d]),setminus(select(x->x <10^L&&x>=10^(L-1),d),Set(concat(vector(L,o,digits(n\10^(L-o),10^L)))))&&return)}
-
PARI
overlap(long,short)=my(D=10^#digits(short)); while(long>=short, if(long%D==short,return(1));long\=10); 0 is(n)=my(d=divisors(n)); forstep(i=#d-1,1,-1, if(!overlap(n,d[i]), return(0))); 1 \\ Charles R Greathouse IV, Mar 09 2014
Comments