cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239065 n^3*(n^4 + n^2 - 1).

This page as a plain text file.
%I A239065 #16 Sep 08 2022 08:46:07
%S A239065 1,152,2403,17344,81125,287496,840007,2129408,4841289,10099000,
%T A239065 19646891,36078912,63117613,105948584,171615375,269479936,411753617,
%U A239065 614103768,896340979,1283192000,1805163381,2499500872,3411249623,4594420224,6113265625,8043673976
%N A239065 n^3*(n^4 + n^2 - 1).
%C A239065 Row sums of A016755 read as triangular array.
%H A239065 Vincenzo Librandi, <a href="/A239065/b239065.txt">Table of n, a(n) for n = 1..1000</a>
%F A239065 a(n) = n^7 + n^5 - n^3.
%F A239065 G.f.: x*(1+144*x+1215*x^2+2320*x^3+1215*x^4+144*x^5+x^6)/(x-1)^8.
%e A239065 A016755, as triangular array begins:
%e A239065 1;
%e A239065 27, 125;
%e A239065 343, 729, 1331;
%e A239065 2197, 3375, 4913, 6859;
%e A239065 9261, 12167, 15625, 19683, 24389;
%e A239065 29791, 35937, 42875, 50653, 59319, 68921;..
%e A239065 Row sums are:
%e A239065 1;
%e A239065 3^3 + 5^3 = 27 + 125 = 152;
%e A239065 7^3 + 9^3 + 11^3 = 343 + 729 + 1331 = 2403;
%e A239065 13^3 + 15^3 + 17^3 + 19^3 = 2197 + 3375 + 4913 + 6859 = 17344;
%e A239065 21^3 + 23^3 + 25^3 + 27^3 + 29^3 = 9261 + 12167 + 15625 + 19683 + 24389 = 81125;
%e A239065 31^3 + 33^3 + 35^3 + 37^3 + 39^3 + 41^3 = 287496 = 66^3.
%p A239065 A239065:=n->n^7 + n^5 - n^3; seq(A239065(n), n=1..30); # _Wesley Ivan Hurt_, Mar 09 2014
%t A239065 Table[n^7 + n^5 - n^3, {n, 30}] (* _Wesley Ivan Hurt_, Mar 09 2014 *)
%t A239065 CoefficientList[Series[(1 + 144 x + 1215 x^2 + 2320 x^3 + 1215 x^4 + 144 x^5 + x^6)/(x - 1)^8, {x, 0, 40}], x] (* _Vincenzo Librandi_, Mar 11 2014 *)
%o A239065 (PARI) a(n) = n^7+n^5-n^3 \\ _Charles R Greathouse IV_, Mar 09 2014
%o A239065 (Magma) [n^3*(n^4 + n^2 - 1): n in [1..30]]; // _Vincenzo Librandi_, Mar 11 2014
%Y A239065 Cf. A016755.
%K A239065 easy,nonn
%O A239065 1,2
%A A239065 _Philippe Deléham_, Mar 09 2014