A239098 Triangle read by rows: T(0,0)=1; T(m,0)=0; otherwise T(m,n) = (m-1)*T(m-1,n)+(m-1+n)*T(m-1,n-1).
1, 0, 1, 0, 1, 3, 0, 2, 10, 15, 0, 6, 40, 105, 105, 0, 24, 196, 700, 1260, 945, 0, 120, 1148, 5068, 12600, 17325, 10395, 0, 720, 7848, 40740, 126280, 242550, 270270, 135135, 0, 5040, 61416, 363660, 1332100, 3213210, 5045040, 4729725, 2027025, 0, 40320, 541728, 3584856, 15020720, 43022980, 85345260, 113513400, 91891800, 34459425
Offset: 0
Examples
Triangle begins: 1, 0, 1, 0, 1, 3, 0, 2, 10, 15, 0, 6, 40, 105, 105, 0, 24, 196, 700, 1260, 945, 0, 120, 1148, 5068, 12600, 17325, 10395, 0, 720, 7848, 40740, 126280, 242550, 270270, 135135, ...
References
- P. W. Shor, Problem 78-6: A combinatorial identity, in Problems and Solutions column, SIAM Review; problem in 20, p. 394 (1978); solution in 21, pp. 258-260 (1979).
Links
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 12-13.
Crossrefs
Cf. A075856.
Programs
-
Maple
T:=proc(m,n) option remember; if (m=0) and (n=0) then 1; elif (m=0) or (n=0) then 0; else (m-1)*T(m-1,n)+(m-1+n)*T(m-1,n-1); fi; end; M:=20; for m from 0 to M do lprint([seq(T(m,n),n=0..m)]); od:
Comments