cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239101 Riordan array read by rows, corresponding to array in A180562.

This page as a plain text file.
%I A239101 #20 Sep 15 2014 04:04:06
%S A239101 1,2,1,4,2,1,10,5,2,1,26,13,6,2,1,70,35,16,7,2,1,192,96,45,19,8,2,1,
%T A239101 534,267,126,56,22,9,2,1,1500,750,357,160,68,25,10,2,1,4246,2123,1016,
%U A239101 463,198,81,28,11,2,1,12092,6046,2907,1337,586,240,95,31
%N A239101 Riordan array read by rows, corresponding to array in A180562.
%C A239101 Take lower triangle of square array in A180562, read from right to left.
%C A239101 Row sums are in A225034. - _Philippe Deléham_, Mar 25 2014
%C A239101 Riordan array (f(x), (f(x)-1)/(2*f(x))) where f(x) = sqrt((1+x)/(1-3*x)). - _Philippe Deléham_, Mar 25 2014
%H A239101 D. Baccherini, D. Merlini, R. Sprugnoli, <a href="http://dx.doi.org/10.1016/j.disc.2006.07.023">Binary words excluding a pattern and proper Riordan arrays</a>, Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003).
%F A239101 T(0,0) = 1, T(n,0) = 2*T(n,1) for n>0, T(n,k) = T(n-1,k-1) - T(n-1,k) + T(n-1,k+1) + T(n,k+1) for k>0, T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Mar 25 2014
%e A239101 Triangle begins:
%e A239101 1
%e A239101 2 1
%e A239101 4 2 1
%e A239101 10 5 2 1
%e A239101 26 13 6 2 1
%e A239101 70 35 16 7 2 1
%e A239101 192 96 45 19 8 2 1
%e A239101 ...
%e A239101 192 = 2*96, 96 = 70 - 35 + 16 + 45, 45 = 35 - 16 + 7 + 19, etc. - _Philippe Deléham_, Mar 25 2014
%e A239101 Production matrix is:
%e A239101 2, 1
%e A239101 0, 0, 1
%e A239101 2, 1, 0, 1
%e A239101 2, 1, 1, 0, 1
%e A239101 2, 1, 1, 1, 0, 1
%e A239101 2, 1, 1, 1, 1, 0, 1
%e A239101 2, 1, 1, 1, 1, 1, 0, 1
%e A239101 2, 1, 1, 1, 1, 1, 1, 0, 1
%e A239101 ... _Philippe Deléham_, Sep 15 2014
%Y A239101 Cf. A180562.
%Y A239101 Cf. T(n,0) = A025565(n+1), T(n+1,1) = A005773(n+1), T(n+2,2) = A005717(n+1), A225034 (Row sums). - _Philippe Deléham_, Mar 25 2014
%K A239101 nonn,tabl,more
%O A239101 0,2
%A A239101 _N. J. A. Sloane_, Mar 25 2014
%E A239101 More terms from _Philippe Deléham_, Mar 25 2014