A239103 Triangular array read by rows, arising from enumeration of binary words containing n 0's and k 1's that avoid the pattern 1011101.
1, 2, 1, 6, 3, 1, 20, 10, 4, 1, 70, 35, 15, 5, 1, 248, 123, 54, 20, 6, 1, 894, 442, 198, 78, 26, 7, 1, 3264, 1611, 732, 300, 108, 33, 8, 1, 12036, 5936, 2727, 1150, 437, 146, 41, 9, 1, 44722, 22047, 10214, 4398, 1736, 617, 192, 50, 10, 1
Offset: 0
Examples
Triangle begins: 1 2 1 6 3 1 20 10 4 1 70 35 15 5 1 248 123 54 20 6 1 894 442 198 78 26 7 1 3264 1611 732 300 108 33 8 1 ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened (first 16 rows from Chai Wah Wu)
- D. Baccherini, D. Merlini, R. Sprugnoli, Binary words excluding a pattern and proper Riordan arrays, Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003).
Programs
-
Python
from itertools import combinations A239103_list = [] for n in range(16): for k in range(n, -1, -1): c, d0 = 0, ['0']*(n+k) for x in combinations(range(n+k), n): d = list(d0) for i in x: d[i] = '1' if not '1011101' in ''.join(d): c += 1 A239103_list.append(c) # Chai Wah Wu, Sep 12 2014
Extensions
More terms from Chai Wah Wu, Sep 12 2014