cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239126 Rectangular array showing the starting values M(n, k), k >= 1, for the Collatz operation (ud)^n, n >= 1, ending in an odd number, read by antidiagonals.

This page as a plain text file.
%I A239126 #40 Feb 16 2025 08:33:21
%S A239126 3,7,7,11,15,15,15,23,31,31,19,31,47,63,63,23,39,63,95,127,127,27,47,
%T A239126 79,127,191,255,255,31,55,95,159,255,383,511,511,35,63,111,191,319,
%U A239126 511,767,1023,1023,39,71,127,223,383,639,1023,1535,2047,2047
%N A239126 Rectangular array showing the starting values M(n, k), k >= 1, for the Collatz operation (ud)^n, n >= 1, ending in an odd number, read by antidiagonals.
%C A239126 The companion array and triangle for the odd end numbers N(n, k) is given in A239127.
%C A239126 The two operations on natural numbers m used in the Collatz 3x+1 conjecture are here (following the M. Trümper paper given in the link) denoted by u for 'up' and d for 'down': u m = 3*m+1, if m is odd, and d m = m/2 if m is even. The present array gives all start numbers M(n, k) for the Collatz word (ud)^n = s^n (s = ud is useful because, except for the one letter word u, at least one d follows a letter u), with n >= 1, and k >= 1. Such Collatz sequences have the maximal number of u's (grow fastest).
%C A239126 This rectangular array is M of Example 2.2. with x=y = n, n >= 1, of the M. Trümper reference, pp. 7-8, written as a triangle by taking NE-SW diagonals. The Collatz sequence starting with M(n, k) has length 2*n+1 for each k and it ends in the odd number N(n, k) given in A239127.
%C A239126 The first row sequences of the array M (columns of triangle TM) are A004767, A004771, A125169, A239128, ...
%H A239126 Wolfdieter Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Lang/lang6.html">On Collatz' Words, Sequences, and Trees</a>, J. of Integer Sequences, Vol. 17 (2014), Article 14.11.7.
%H A239126 Manfred Trümper, <a href="http://dx.doi.org/10.1155/2014/756917">The Collatz Problem in the Light of an Infinite Free Semigroup</a>, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
%H A239126 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CollatzProblem.html">Collatz Problem</a>.
%H A239126 Wikipedia, <a href="https://en.wikipedia.org/wiki/Collatz_conjecture">Collatz Conjecture</a>.
%F A239126 The array: M(n, k) = 2^(n+1)*k - 1 for n >= 1 and k >= 1.
%F A239126 The triangle: TM(m, n) = M(n, m-n+1) = 2^(n+1)*(m-n+1) - 1 for m >= n >= 1 and 0 for m < n.
%F A239126 a(n) = 4*A087808(A130328(n-1)) - 1 (conjectured). - _Christian Krause_, Jun 15 2021
%e A239126 The rectangular array M(n, k) begins:
%e A239126 n\k     1    2    3    4     5     6     7     8     9    10 ...
%e A239126 1:      3    7   11   15    19    23    27    31    35    39
%e A239126 2:      7   15   23   31    39    47    55    63    71    79
%e A239126 3:     15   31   47   63    79    95   111   127   143   159
%e A239126 4:     31   63   95  127   159   191   223   255   287   319
%e A239126 5:     63  127  191  255   319   383   447   511   575   639
%e A239126 6:    127  255  383  511   639   767   895  1023  1151  1279
%e A239126 7:    255  511  767 1023  1279  1535  1791  2047  2303  2559
%e A239126 8:    511 1023 1535 2047  2559  3071  3583  4095  4607  5119
%e A239126 9:   1023 2047 3071 4095  5119  6143  7167  8191  9215 10239
%e A239126 10:  2047 4095 6143 8191 10239 12287 14335 16383 18431 20479
%e A239126 ...
%e A239126 The triangle TM(m, n) begins (zeros are not shown):
%e A239126 m\n   1    2     3     4     5     6      7      8      9    10 ...
%e A239126 1:    3
%e A239126 2:    7    7
%e A239126 3:   11   15    15
%e A239126 4:   15   23    31    31
%e A239126 5:   19   31    47    63    63
%e A239126 6:   23   39    63    95   127   127
%e A239126 7:   27   47    79   127   191   255    255
%e A239126 8:   31   55    95   159   255   383    511    511
%e A239126 9:   35   63   111   191   319   511    767   1023   1023
%e A239126 10:  39   71   127   223   383   639   1023   1535   2047  2047
%e A239126 ...
%e A239126 ---------------------------------------------------------------------
%e A239126 n=1, ud, k=1: M(1, 1) = 3 = TM(1, 1), N(1,1) = 5 with the Collatz sequence  [3, 10, 5] of length 3.
%e A239126 n=1, ud, k=2: M(1, 2) = 7 = TM(2, 1), N(1,2) = 11 with the Collatz sequence  [7, 22, 11] of length 3.
%e A239126 n=4, (ud)^4, k=2: M(4, 2) = 63 = TM(5, 4), N(4,2) = 323 with the Collatz sequence  [63, 190, 95, 286, 143, 430, 215, 646, 323] of length 9.
%e A239126 n=5, (ud)^5, k=1: M(5, 1) = 63 =  TM(5, 5), N(5,1) = 485 with the Collatz sequence  [63, 190, 95, 286, 143, 430, 215, 646, 323, 970, 485] of length 11.
%Y A239126 Cf. A006577, A139399, A112695, A238475, A238476, A004767, A004771, A125169, A239127, A239128.
%K A239126 nonn,tabl,easy
%O A239126 1,1
%A A239126 _Wolfdieter Lang_, Mar 13 2014