This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239141 #20 Nov 19 2022 19:19:55 %S A239141 1,1,2,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2, %T A239141 2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2, %U A239141 3,2,2,3,2,2,3,2,2,3,2,2,3,2,2,3,2,2 %N A239141 Number of strict partitions of n having standard deviation <= 1. %C A239141 Regarding standard deviation, see Comments at A238616. %H A239141 Antti Karttunen, <a href="/A239141/b239141.txt">Table of n, a(n) for n = 1..10005</a> %H A239141 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1). %F A239141 a(n) + A239142(n) = A000009(n) for n >= 1. %F A239141 G.f.: -(x^5 + x^4 + x^3 + 2*x^2 + x + 1)*x / ((x-1)*(x^2 + x + 1)). - _Alois P. Heinz_, Mar 14 2014 %e A239141 The standard deviations of the strict partitions of 9 are 0.0, 3.5, 2.5, 1.5, 2.16025, 0.5, 1.63299, 0.816497, so that a(9) = 3. %t A239141 z = 30; g[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, Length[t]}]/Length[t]] %t A239141 Table[Count[g[n], p_ /; s[p] < 1], {n, z}] (* A239140 *) %t A239141 Table[Count[g[n], p_ /; s[p] <= 1], {n, z}] (* A239141 *) %t A239141 Table[Count[g[n], p_ /; s[p] == 1], {n, z}] (* periodic 01 *) %t A239141 Table[Count[g[n], p_ /; s[p] > 1], {n, z}] (* A239142 *) %t A239141 Table[Count[g[n], p_ /; s[p] >= 1], {n, z}] (* A239143 *) %t A239141 t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsQ[n]}]] %t A239141 ListPlot[Sort[t[30]]] (*plot of st.dev's of strict partitions of 30*) %t A239141 (* _Peter J. C. Moses_, Mar 03 2014 *) %t A239141 Join[{1, 1, 2},LinearRecurrence[{0, 0, 1},{2, 2, 3},83]] (* _Ray Chandler_, Aug 25 2015 *) %o A239141 (PARI) A239141(n) = (1+(n>3)+!(n%3)); \\ _Antti Karttunen_, May 24 2021 %Y A239141 Cf. A000009, A238616, A239140, A239142, A239143. %K A239141 nonn,easy %O A239141 1,3 %A A239141 _Clark Kimberling_, Mar 11 2014