This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239144 #19 Jan 19 2015 08:41:02 %S A239144 1,1,1,2,1,1,4,2,1,1,10,5,2,1,1,26,13,5,2,1,1,76,37,15,5,2,1,1,232, %T A239144 112,47,15,5,2,1,1,764,363,155,52,15,5,2,1,1,2620,1235,532,188,52,15, %U A239144 5,2,1,1,9496,4427,1910,704,203,52,15,5,2,1,1 %N A239144 Number T(n,k) of self-inverse permutations p on [n] such that all transposition distances (if any) are larger than k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A239144 T(n,k) is defined for all n, k >= 0: T(n,k) = 1 for k >= n. %C A239144 Columns k=0 and k=1 respectively give A000085 and A170941 (involutions on [n] without adjacent transpositions). %C A239144 Diagonal T(2n,n) gives A000110(n). %H A239144 Joerg Arndt and Alois P. Heinz, <a href="/A239144/b239144.txt">Rows n = 0..30, flattened</a> %e A239144 T(4,0) = 10: 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412, 4231, 4321. %e A239144 T(4,1) = 5: 1234, 1432, 3214, 3412, 4231. %e A239144 T(4,2) = 2: 1234, 4231. %e A239144 T(4,3) = 1: 1234. %e A239144 Triangle T(n,k) begins: %e A239144 00: 1; %e A239144 01: 1, 1; %e A239144 02: 2, 1, 1; %e A239144 03: 4, 2, 1, 1; %e A239144 04: 10, 5, 2, 1, 1; %e A239144 05: 26, 13, 5, 2, 1, 1; %e A239144 06: 76, 37, 15, 5, 2, 1, 1; %e A239144 07: 232, 112, 47, 15, 5, 2, 1, 1; %e A239144 08: 764, 363, 155, 52, 15, 5, 2, 1, 1; %e A239144 09: 2620, 1235, 532, 188, 52, 15, 5, 2, 1, 1; %e A239144 10: 9496, 4427, 1910, 704, 203, 52, 15, 5, 2, 1, 1; %p A239144 b:= proc(n, k, s) option remember; `if`(n=0, 1, `if`(n in s, %p A239144 b(n-1, k, s minus {n}), b(n-1, k, s) +add(`if`(i in s, 0, %p A239144 b(n-1, k, s union {i})), i=1..n-k-1))) %p A239144 end: %p A239144 T:= (n, k)-> b(n, k, {}): %p A239144 seq(seq(T(n, k), k=0..n), n=0..14); %t A239144 b[n_, k_, s_List] := b[n, k, s] = If[n == 0, 1, If[MemberQ[s, n], b[n-1, k, s ~Complement~ {n}], b[n-1, k, s] + Sum[If[MemberQ[s, i], 0, b[n-1, k, s ~Union~ {i}]], {i, 1, n-k-1}]]]; T[n_, k_] := b[n, k, {}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Jan 19 2015, after _Alois P. Heinz_ *) %Y A239144 Cf. A239145. %K A239144 nonn,tabl %O A239144 0,4 %A A239144 _Joerg Arndt_ and _Alois P. Heinz_, Mar 11 2014