This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239146 #19 Mar 21 2025 18:34:22 %S A239146 0,0,0,0,0,0,0,3,2,3,0,5,0,3,2,0,0,13,12,0,2,0,0,0,6,15,10,0,12,0,0, %T A239146 15,20,0,12,5,0,15,22,21,12,0,0,0,14,27,0,35,0,0,8,15,0,0,24,27,0,0, %U A239146 48,7,48,0,50,3,6,7,0,0,28,0,18,0,0,27,34 %N A239146 Smallest k>0 such that n +/- k and n^2 +/- k are all prime. a(n) = 0 if no such number exists. %C A239146 a(n) is always smaller than n due to the requirement on n-k. %H A239146 Giovanni Resta, <a href="/A239146/b239146.txt">Table of n, a(n) for n = 1..10000</a> %e A239146 8 +/- 1 (7 and 9) and 8^2 +/- 1 (63 and 65) are not all prime. 8 +/- 2 (6 and 10) and 8^2 +/- 2 (62 and 66) are not all prime. However, 8 +/- 3 (5 and 11) and 8^2 +/- 3 (61 and 67) are all prime. Thus, a(8) = 3. %p A239146 A239146 := proc(n) %p A239146 local k ; %p A239146 for k from 1 do %p A239146 if n-k <= 1 then %p A239146 return 0; %p A239146 end if; %p A239146 if isprime(n+k) and isprime(n-k) and isprime(n^2+k) %p A239146 and isprime(n^2-k) then %p A239146 return k; %p A239146 end if; %p A239146 end do; %p A239146 end proc: %p A239146 seq(A239146(n),n=1..80) ; # _R. J. Mathar_, Mar 12 2014 %t A239146 a[n_] := Catch@ Block[{k = 1}, While[k < n, And @@ PrimeQ@ {n+k, n-k, n^2+k, n^2-k} && Throw@k; k++]; 0]; Array[a, 75] (* _Giovanni Resta_, Mar 13 2014 *) %o A239146 (Python) %o A239146 import sympy %o A239146 from sympy import isprime %o A239146 def c(n): %o A239146 for k in range(1,n): %o A239146 if isprime(n+k) and isprime(n-k) and isprime(n**2+k) and isprime(n**2-k): %o A239146 return k %o A239146 n = 1 %o A239146 while n < 100: %o A239146 if c(n) == None: %o A239146 print(0) %o A239146 else: %o A239146 print(c(n)) %o A239146 n += 1 %Y A239146 Cf. A082467, A172990, A172989. %K A239146 nonn %O A239146 1,8 %A A239146 _Derek Orr_, Mar 11 2014