This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239147 #13 Nov 02 2024 18:22:38 %S A239147 12,25,29,36,45,55,78,87,105,109,111,130,140,141,155,160,190,196,209, %T A239147 216,231,245,246,265,274,280,289,294,311,315,329,356,364,385,409,441, %U A239147 444,465,475,489,494,531,535,572,582,600,624,629,650,665 %N A239147 Numbers n such that there exists a k>0 such that all six of n +/- k, n^2 +/- k, and n^3 +/- k are prime. %C A239147 This is similar to A239146; however, here the numbers listed are the n values for which k != 0. %C A239147 It is very likely that k does not exist for most n values since k < n for all n. Thus, only the numbers n with some such k (depending on n) are listed. %e A239147 n = 1,2,3,...11 do not have a k such that n +/- k, n^2 +/- k, and n^3 +/- k are all prime. However, for n = 12, 12 +/- 5 (7 and 17), 12^2 +/- 5 (139 and 149) and 12^3 +/- 5 (1723 and 1733) are all prime. So 12 is a member of this sequence. %p A239147 isA239147 := proc(n) %p A239147 local k ; %p A239147 for k from 1 do %p A239147 if n-k <= 1 then %p A239147 return false; %p A239147 end if; %p A239147 if isprime(n+k) and isprime(n-k) and isprime(n^2+k) %p A239147 and isprime(n^2-k) and isprime(n^3+k) and isprime(n^3-k) then %p A239147 return true; %p A239147 end if; %p A239147 end do; %p A239147 end proc: %p A239147 for n from 1 to 800 do %p A239147 if isA239147(n) then %p A239147 printf("%d,",n) ; %p A239147 end if; %p A239147 end do: # _R. J. Mathar_, Mar 12 2014 %o A239147 (Python) %o A239147 import sympy %o A239147 from sympy import isprime %o A239147 def c(n): %o A239147 for k in range(n): %o A239147 if isprime(n+k) and isprime(n-k) and isprime(n**2+k) and isprime(n**2-k) and isprime(n**3+k) and isprime(n**3-k): %o A239147 return k %o A239147 n = 1 %o A239147 while n < 10**3: %o A239147 if c(n) != None: %o A239147 print(n) %o A239147 n += 1 %Y A239147 Cf. A239146. %K A239147 nonn %O A239147 1,1 %A A239147 _Derek Orr_, Mar 11 2014