This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239155 #6 Jul 23 2025 10:57:46 %S A239155 1,2,1,7,2,7,24,7,55,17,88,24,868,208,96,328,88,12159,5775,2778,340, %T A239155 1235,328,175471,135766,209839,17050,1639,4668,1235,2519488,3313304, %U A239155 12844591,2709568,166531,6623,17675,4668,36221263,80240064,821135900,330311070 %N A239155 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order. %C A239155 Table starts %C A239155 ....1.......2..........7...........24..............88................328 %C A239155 ....1.......2..........7...........24..............88................328 %C A239155 ....7......55........868........12159..........175471............2519488 %C A239155 ...17.....208.......5775.......135766.........3313304...........80240064 %C A239155 ...96....2778.....209839.....12844591.......821135900........52019283568 %C A239155 ..340...17050....2709568....330311070.....42600989632......5427557363908 %C A239155 .1639..166531...63961519..18120156500...5469574400477...1628795409782566 %C A239155 .6623.1221727.1049404191.629468400383.407538214264758.259498303698165490 %H A239155 R. H. Hardin, <a href="/A239155/b239155.txt">Table of n, a(n) for n = 1..113</a> %F A239155 Empirical for column k: %F A239155 k=1: a(n) = 4*a(n-1) +7*a(n-2) -26*a(n-3) +5*a(n-4) +14*a(n-5) %F A239155 k=2: [order 14] %F A239155 k=3: [order 9] %F A239155 Empirical for row n: %F A239155 n=1: a(n) = 4*a(n-1) +a(n-2) -6*a(n-3) -3*a(n-4) %F A239155 n=2: a(n) = 4*a(n-1) +a(n-2) -6*a(n-3) -3*a(n-4) %F A239155 n=3: a(n) = 14*a(n-1) +14*a(n-2) -124*a(n-3) -6*a(n-4) +90*a(n-5) -27*a(n-6) %F A239155 n=4: [order 14] %F A239155 n=5: [order 57] %e A239155 Some solutions for n=4 k=4 %e A239155 ..0..1..1..0..2....0..1..1..2..3....0..1..2..0..2....0..1..2..0..3 %e A239155 ..0..1..1..0..2....0..1..1..2..3....0..1..2..0..2....0..1..2..0..3 %e A239155 ..0..1..1..0..2....0..2..1..2..1....2..1..2..1..0....0..1..2..0..3 %e A239155 ..0..3..1..3..1....3..2..0..0..1....2..0..1..1..0....1..2..1..2..3 %e A239155 ..0..3..1..3..1....3..2..0..0..1....2..0..1..1..0....1..2..1..2..3 %Y A239155 Row 1 and 2 are A221454(n+1) %K A239155 nonn,tabl %O A239155 1,2 %A A239155 _R. H. Hardin_, Mar 11 2014