cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A239150 Number of (n+1) X (1+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 1, 7, 17, 96, 340, 1639, 6623, 29843, 126163, 554310, 2380524, 10363965, 44756085, 194216303, 840357677, 3642433780, 15771490916, 68331367227, 295943443667, 1282011757819, 5552887116543, 24053558944522, 104188496250108
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Examples

			Some solutions for n=5:
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..0..2....1..2....2..0....2..1....2..1....1..0....2..0....2..1....2..0....2..0
..0..2....1..2....2..0....2..0....2..1....1..0....2..0....2..1....2..0....2..0
..2..0....1..3....3..0....2..0....1..3....1..0....1..0....3..1....0..1....3..2
..2..0....1..3....3..0....2..0....1..3....1..0....1..0....3..1....0..1....3..2
		

Crossrefs

Column 1 of A239155.

Formula

Empirical: a(n) = 4*a(n-1) + 7*a(n-2) - 26*a(n-3) + 5*a(n-4) + 14*a(n-5).
Empirical g.f.: x*(1 - 3*x - 4*x^2 + 8*x^3) / ((1 - x - x^2)*(1 - 3*x - 9*x^2 + 14*x^3)).

A239151 Number of (n+1)X(2+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

2, 2, 55, 208, 2778, 17050, 166531, 1221727, 10652903, 83558723, 698912193, 5620874008, 46297856418, 375826633534, 3078013187839, 25072750273992, 204911552403250, 1671311190316246, 13648365689804011, 111372868203567131
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Comments

Column 2 of A239155

Examples

			Some solutions for n=5
..0..1..0....0..1..0....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2
..0..1..0....0..1..0....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2
..0..2..3....0..1..2....0..3..0....3..2..0....1..3..2....0..3..0....2..3..2
..0..2..3....3..1..2....0..3..0....3..2..0....1..3..2....1..3..0....2..3..2
..0..3..1....3..2..1....3..2..1....2..3..1....3..0..1....1..0..2....1..2..3
..0..3..1....3..2..1....3..2..1....2..3..1....3..0..1....1..0..2....1..2..3
		

Formula

Empirical: a(n) = 4*a(n-1) +51*a(n-2) -84*a(n-3) -529*a(n-4) +442*a(n-5) +1605*a(n-6) +1916*a(n-7) -5423*a(n-8) -5800*a(n-9) +8753*a(n-10) +890*a(n-11) -5088*a(n-12) +4464*a(n-13) +3456*a(n-14)

A239152 Number of (n+1)X(3+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

7, 7, 868, 5775, 209839, 2709568, 63961519, 1049404191, 21350167780, 381843947671, 7373045875687, 135997241404032, 2577824537597143, 48074166516591223, 905276493099636196, 16948804700642238303
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Comments

Column 3 of A239155

Examples

			Some solutions for n=5
..0..1..1..0....0..1..1..2....0..1..0..2....0..1..0..2....0..1..1..2
..0..1..1..0....0..1..1..2....0..1..0..2....0..1..0..2....0..1..1..2
..1..0..1..0....1..3..2..0....3..0..0..3....2..1..3..0....1..0..1..2
..1..0..1..2....1..3..2..0....3..0..0..3....2..1..3..0....1..0..0..2
..2..3..3..2....0..3..0..1....2..0..1..2....3..1..0..2....3..2..0..1
..2..3..3..2....0..3..0..1....2..0..1..2....3..1..0..2....3..2..0..1
		

Formula

Empirical: a(n) = 20*a(n-1) +86*a(n-2) -2504*a(n-3) +7634*a(n-4) +21878*a(n-5) -95663*a(n-6) +32018*a(n-7) +100940*a(n-8) -38416*a(n-9)

A239153 Number of (n+1)X(4+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

24, 24, 12159, 135766, 12844591, 330311070, 18120156500, 629468400383, 28646802159654, 1108832844851022, 47257467282260746, 1901383445656471050, 79172996011297669608, 3229805113653824580575, 133380680053667604594194
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Comments

Column 4 of A239155

Examples

			Some solutions for n=4
..0..1..2..0..3....0..1..0..2..1....0..1..0..1..0....0..1..0..2..3
..0..1..2..0..3....0..1..0..2..1....0..1..0..1..0....0..1..0..2..3
..0..2..0..0..3....1..2..0..2..3....2..1..2..1..0....2..1..0..2..3
..3..2..0..2..3....1..2..0..2..3....2..1..2..2..0....2..0..1..0..3
..3..2..0..2..3....1..2..0..2..3....2..1..2..2..0....2..0..1..0..3
		

A239156 Number of (3+1)X(n+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

7, 55, 868, 12159, 175471, 2519488, 36221263, 520615791, 7483320292, 107564015719, 1546111034695, 22223587182336, 319438814614615, 4591569914960743, 65998599449004004, 948654862324898319
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Comments

Row 3 of A239155

Examples

			Some solutions for n=4
..0..1..0..2..3....0..1..0..0..1....0..1..2..1..0....0..1..0..1..2
..0..1..0..2..3....0..1..0..0..1....0..1..2..1..0....0..1..0..1..2
..1..3..0..0..1....1..2..2..1..2....3..1..1..0..1....2..1..0..3..0
..1..3..0..0..1....1..2..2..1..2....3..1..1..0..1....2..1..0..3..0
		

Formula

Empirical: a(n) = 14*a(n-1) +14*a(n-2) -124*a(n-3) -6*a(n-4) +90*a(n-5) -27*a(n-6)

A239157 Number of (4+1)X(n+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

17, 208, 5775, 135766, 3313304, 80240064, 1946535209, 47203774762, 1144788832875, 27763021735024, 673301630092412, 16328724383102508, 395999761775761841, 9603677662310968264, 232905759724044440751
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Comments

Row 4 of A239155

Examples

			Some solutions for n=4
..0..1..1..2..3....0..1..2..0..3....0..1..0..0..1....0..1..0..2..0
..0..1..1..2..3....0..1..2..0..3....0..1..0..0..1....0..1..0..2..0
..0..1..0..1..3....0..1..0..0..3....0..1..0..0..1....0..1..0..1..3
..0..2..0..1..3....2..0..0..2..3....1..2..0..3..0....3..0..3..1..3
..0..2..0..1..3....2..0..0..2..3....1..2..0..3..0....3..0..3..1..3
		

Formula

Empirical: a(n) = 20*a(n-1) +125*a(n-2) -466*a(n-3) -1721*a(n-4) +3476*a(n-5) +3342*a(n-6) -3082*a(n-7) -5349*a(n-8) -4488*a(n-9) +8976*a(n-10) +2826*a(n-11) -2862*a(n-12) -324*a(n-13) +243*a(n-14)

A239158 Number of (5+1)X(n+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

96, 2778, 209839, 12844591, 821135900, 52019283568, 3301711870920, 209479341898544, 13291665794245067, 843354268309287289, 53510901660533324714, 3395268764228553206688, 215429967962178289895220
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Comments

Row 5 of A239155

Examples

			Some solutions for n=3
..0..1..1..2....0..1..0..1....0..1..1..2....0..1..1..0....0..1..0..2
..0..1..1..2....0..1..0..1....0..1..1..2....0..1..1..0....0..1..0..2
..0..1..1..0....0..1..2..3....1..0..3..2....2..3..1..0....2..0..0..2
..2..1..1..0....0..1..2..3....1..0..3..0....2..3..1..0....2..0..0..2
..2..0..2..3....2..0..1..3....2..3..3..0....0..3..1..2....2..3..3..2
..2..0..2..3....2..0..1..3....2..3..3..0....0..3..1..2....2..3..3..2
		

Formula

Empirical recurrence of order 57 (see link above)

A239159 Number of (6+1)X(n+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

340, 17050, 2709568, 330311070, 42600989632, 5427557363908, 693325664438772, 88515970694682238, 11302116207196944184, 1443066224926757673588, 184253299972460754777622, 23525764336051214515515358
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Comments

Row 6 of A239155

Examples

			Some solutions for n=2
..0..1..2....0..1..0....0..1..0....0..1..2....0..1..2....0..1..0....0..1..2
..0..1..2....0..1..0....0..1..0....0..1..2....0..1..2....0..1..0....0..1..2
..2..3..1....2..3..0....2..3..0....2..3..2....1..0..3....0..1..0....0..2..1
..2..3..1....2..3..2....2..3..0....2..3..2....1..0..3....2..1..2....1..2..1
..0..3..1....2..3..2....2..1..2....2..1..2....1..2..3....2..1..2....1..2..1
..0..3..2....1..0..2....3..1..2....0..1..0....3..2..1....3..1..3....1..3..0
..0..3..2....1..0..2....3..1..2....0..1..0....3..2..1....3..1..3....1..3..0
		

A239160 Number of (7+1)X(n+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

1639, 166531, 63961519, 18120156500, 5469574400477, 1628795409782566, 486439997897622259, 145186363056322713567, 43339017958528994310740, 12936602480737955657135546, 3861570524893536530703944116
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Comments

Row 7 of A239155

Examples

			Some solutions for n=2
..0..1..0....0..1..0....0..1..2....0..1..2....0..1..2....0..1..0....0..1..0
..0..1..0....0..1..0....0..1..2....0..1..2....0..1..2....0..1..0....0..1..0
..2..1..3....2..1..0....0..1..0....0..1..0....0..1..2....2..1..0....1..0..2
..2..0..3....2..1..2....2..1..0....0..1..0....1..3..2....2..1..3....1..0..2
..1..0..3....1..0..2....2..1..0....2..1..3....1..3..2....3..0..3....1..2..0
..1..3..1....1..0..2....0..3..0....2..1..3....3..2..1....3..0..3....3..2..0
..1..3..1....3..0..1....0..3..2....1..2..1....3..2..1....1..2..0....3..1..2
..1..3..1....3..0..1....0..3..2....1..2..1....3..2..1....1..2..0....3..1..2
		

A239149 Number of (n+1)X(n+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 2, 868, 135766, 821135900, 5427557363908, 486439997897622259, 105891766683961733641397
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Comments

Diagonal of A239155

Examples

			Some solutions for n=4
..0..1..0..2..1....0..1..1..2..3....0..1..2..3..2....0..1..2..0..3
..0..1..0..2..1....0..1..1..2..3....0..1..2..3..2....0..1..2..0..3
..3..1..3..2..3....0..2..1..2..3....0..1..3..3..2....0..1..0..1..0
..3..1..3..2..3....3..2..2..3..2....0..2..3..0..2....0..2..0..1..0
..3..1..3..2..3....3..2..2..3..2....0..2..3..0..2....0..2..0..1..0
		
Showing 1-10 of 11 results. Next