This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239164 #14 Nov 15 2018 11:10:41 %S A239164 0,1,12,1240,1655004,32796849930,10743023668660275, %T A239164 62590747974586286694030,6826987264035710020018176749475, %U A239164 14471606032117455546329821353159274382372,613427607589897771307393494301176209875530879140211 %N A239164 Number of partitions of 5^n into parts that are at most n with at least one part of each size. %H A239164 Alois P. Heinz, <a href="/A239164/b239164.txt">Table of n, a(n) for n = 0..40</a> %H A239164 A. V. Sills and D. Zeilberger, <a href="https://arxiv.org/abs/1108.4391">Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz)</a>, arXiv:1108.4391 [math.CO], 2011. %F A239164 a(n) = [x^(5^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j). %F A239164 a(n) ~ 5^(n*(n-1)) / (n!*(n-1)!). - _Vaclav Kotesovec_, Jun 05 2015 %e A239164 a(2) = 12: 2222222222221, 22222222222111, 222222222211111, 2222222221111111, 22222222111111111, 222222211111111111, 2222221111111111111, 22222111111111111111, 222211111111111111111, 2221111111111111111111, 22111111111111111111111, 211111111111111111111111. %t A239164 maxExponent = 45; a[0] = 0; a[1] = 1; %t A239164 a[n_] := Module[{}, aparts = List @@ (Product[1/(1 - x^j), {j, 1, n}] // Apart); cc = aparts + O[x]^maxExponent // CoefficientList[#, x]&; f[k_] = Total[FindSequenceFunction[#, k]& /@ cc];f[5^n - n(n+1)/2 + 1] // Round]; %t A239164 Table[an = a[n]; Print[n, " ", an]; an, {n, 0, 10}] (* _Jean-François Alcover_, Nov 15 2018 *) %Y A239164 Column k=5 of A238012. %K A239164 nonn %O A239164 0,3 %A A239164 _Alois P. Heinz_, Mar 11 2014