cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239166 Number of partitions of 7^n into parts that are at most n with at least one part of each size.

This page as a plain text file.
%I A239166 #9 Jul 19 2017 15:51:08
%S A239166 0,1,24,9633,95520600,27656224652420,260755601247189041231,
%T A239166 85962759806610904434664386174,
%U A239166 1041189281477724923668568740931602845066,480588514551700434552887677121496205669535589365780,8695551969224574889031840216144104978715552114947924501069394617
%N A239166 Number of partitions of 7^n into parts that are at most n with at least one part of each size.
%H A239166 Alois P. Heinz, <a href="/A239166/b239166.txt">Table of n, a(n) for n = 0..36</a>
%H A239166 A. V. Sills and D. Zeilberger, <a href="https://arxiv.org/abs/1108.4391">Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz)</a> (arXiv:1108.4391 [math.CO])
%F A239166 a(n) = [x^(7^n-n*(n+1)/2)] Product_{j=1..n} 1/(1-x^j).
%F A239166 a(n) ~ 7^(n*(n-1)) / (n!*(n-1)!). - _Vaclav Kotesovec_, Jun 05 2015
%Y A239166 Column k=7 of A238012.
%K A239166 nonn
%O A239166 0,3
%A A239166 _Alois P. Heinz_, Mar 11 2014