cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239186 Sum of the largest two parts in the partitions of 4n into 4 parts with smallest part equal to 1.

This page as a plain text file.
%I A239186 #25 Nov 19 2021 12:51:53
%S A239186 2,23,93,243,492,878,1432,2165,3123,4337,5810,7596,9726,12195,15065,
%T A239186 18367,22088,26298,31028,36257,42063,48477,55470,63128,71482,80495,
%U A239186 90261,100811,112100,124230,137232,151053,165803,181513,198122,215748,234422,254075
%N A239186 Sum of the largest two parts in the partitions of 4n into 4 parts with smallest part equal to 1.
%H A239186 Vincenzo Librandi, <a href="/A239186/b239186.txt">Table of n, a(n) for n = 1..1000</a>
%H A239186 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A239186 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,2,-4,2,-1,2,-1).
%F A239186 G.f.: x*(10*x^6+39*x^5+61*x^4+76*x^3+49*x^2+19*x+2) / ((x-1)^4*(x^2+x+1)^2). - _Colin Barker_, Mar 12 2014
%F A239186 a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8). - _Wesley Ivan Hurt_, Nov 19 2021
%e A239186 For a(n) add the numbers in the first two columns.
%e A239186                                               13 + 1 + 1 + 1
%e A239186                                               12 + 2 + 1 + 1
%e A239186                                               11 + 3 + 1 + 1
%e A239186                                               10 + 4 + 1 + 1
%e A239186                                                9 + 5 + 1 + 1
%e A239186                                                8 + 6 + 1 + 1
%e A239186                                                7 + 7 + 1 + 1
%e A239186                                               11 + 2 + 2 + 1
%e A239186                                               10 + 3 + 2 + 1
%e A239186                               9 + 1 + 1 + 1    9 + 4 + 2 + 1
%e A239186                               8 + 2 + 1 + 1    8 + 5 + 2 + 1
%e A239186                               7 + 3 + 1 + 1    7 + 6 + 2 + 1
%e A239186                               6 + 4 + 1 + 1    9 + 3 + 3 + 1
%e A239186                               5 + 5 + 1 + 1    8 + 4 + 3 + 1
%e A239186                               7 + 2 + 2 + 1    7 + 5 + 3 + 1
%e A239186                5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
%e A239186                4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
%e A239186                3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
%e A239186 1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
%e A239186     4(1)            4(2)           4(3)            4(4)       ..   4n
%e A239186 ------------------------------------------------------------------------
%e A239186      2               23             93             243        ..   a(n)
%t A239186 b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
%o A239186 (PARI) Vec(x*(10*x^6+39*x^5+61*x^4+76*x^3+49*x^2+19*x+2)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ _Colin Barker_, Sep 22 2014
%Y A239186 Cf. A238328, A238340, A238702, A238705, A238706, A239056, A239057, A239059.
%K A239186 nonn,easy
%O A239186 1,1
%A A239186 _Wesley Ivan Hurt_, Mar 11 2014