cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239195 Sum of the next to smallest parts in the partitions of 4n into 4 parts with smallest part = 1.

This page as a plain text file.
%I A239195 #23 Jul 08 2025 00:39:08
%S A239195 1,5,17,42,78,134,215,315,447,616,812,1052,1341,1665,2045,2486,2970,
%T A239195 3522,4147,4823,5579,6420,7320,8312,9401,10557,11817,13186,14630,
%U A239195 16190,17871,19635,21527,23552,25668,27924,30325,32825,35477,38286,41202,44282,47531
%N A239195 Sum of the next to smallest parts in the partitions of 4n into 4 parts with smallest part = 1.
%H A239195 Vincenzo Librandi, <a href="/A239195/b239195.txt">Table of n, a(n) for n = 1..1000</a>
%H A239195 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A239195 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,2,-4,2,-1,2,-1).
%F A239195 G.f.: x*(4*x^5+5*x^4+11*x^3+8*x^2+3*x+1) / ((x-1)^4*(x^2+x+1)^2). - _Colin Barker_, Mar 12 2014
%F A239195 a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8). - _Wesley Ivan Hurt_, Jul 08 2025
%e A239195 For a(n) add the numbers in the third columns.
%e A239195                                                13+ 1 + 1 + 1
%e A239195                                                12+ 2 + 1 + 1
%e A239195                                                11+ 3 + 1 + 1
%e A239195                                                10+ 4 + 1 + 1
%e A239195                                                9 + 5 + 1 + 1
%e A239195                                                8 + 6 + 1 + 1
%e A239195                                                7 + 7 + 1 + 1
%e A239195                                                11+ 2 + 2 + 1
%e A239195                                                10+ 3 + 2 + 1
%e A239195                               9 + 1 + 1 + 1    9 + 4 + 2 + 1
%e A239195                               8 + 2 + 1 + 1    8 + 5 + 2 + 1
%e A239195                               7 + 3 + 1 + 1    7 + 6 + 2 + 1
%e A239195                               6 + 4 + 1 + 1    9 + 3 + 3 + 1
%e A239195                               5 + 5 + 1 + 1    8 + 4 + 3 + 1
%e A239195                               7 + 2 + 2 + 1    7 + 5 + 3 + 1
%e A239195                5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
%e A239195                4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
%e A239195                3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
%e A239195 1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
%e A239195     4(1)            4(2)           4(3)            4(4)       ..   4n
%e A239195 ------------------------------------------------------------------------
%e A239195      1               5              17              42        ..   a(n)
%t A239195 b[n_] := Sum[(((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) - ((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) - ((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i))/(4 n)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
%t A239195 LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{1,5,17,42,78,134,215,315},60] (* _Harvey P. Dale_, Jul 05 2025 *)
%o A239195 (PARI) Vec(x*(4*x^5+5*x^4+11*x^3+8*x^2+3*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ _Colin Barker_, Sep 22 2014
%Y A239195 Cf. A238328, A238340, A238702, A238705, A238706, A239056, A239057, A239059, A239186.
%K A239195 nonn,easy
%O A239195 1,2
%A A239195 _Wesley Ivan Hurt_, Mar 11 2014