cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239202 Multiplicative order of phi(n) modulo n when gcd(phi(n),n)=1.

This page as a plain text file.
%I A239202 #16 Aug 01 2019 03:50:01
%S A239202 1,1,2,2,2,2,2,4,2,2,2,2,2,10,6,2,2,2,2,8,2,2,2,12,2,22,2,2,15,2,2,4,
%T A239202 28,2,12,36,2,2,2,2,2,2,44,48,20,2,2,18,2,2,46,6,28,2,2,2,52,22,2,2,2,
%U A239202 58,2,2,18,80,2,2,2,2,45,2,70,28,6,48,2,2,2
%N A239202 Multiplicative order of phi(n) modulo n when gcd(phi(n),n)=1.
%H A239202 Giovanni Resta, <a href="/A239202/b239202.txt">Table of n, a(n) for n = 1..10000</a>
%e A239202 For n = 8: the 8th entry of A003277 is 15, and phi(15) = 8 has multiplicative order 4 modulo 15, so a(8) = 4.
%t A239202 MultiplicativeOrder[EulerPhi[#], #] & /@ Select[Range[1000], GCD[#, EulerPhi[#]] == 1 &]
%o A239202 (PARI) lista(nn) = {for(n=1, nn, my(ephi = eulerphi(n)); if (gcd(ephi, n) == 1, print1(znorder(Mod(ephi, n)), ", ")););} \\ _Michel Marcus_, Feb 09 2015
%Y A239202 Indexed by A003277.
%K A239202 nonn
%O A239202 1,3
%A A239202 _Alexander Gruber_, Mar 12 2014