A239209 a(n) = |{0 < k < n: k*p(n)*(p(n)-1) + 1 is prime}|, where p(.) is the partition function (A000041).
0, 1, 2, 2, 2, 1, 4, 2, 3, 3, 3, 2, 3, 4, 2, 4, 4, 4, 8, 3, 3, 4, 6, 5, 3, 5, 10, 4, 4, 7, 5, 4, 3, 8, 7, 6, 3, 4, 5, 4, 3, 7, 5, 5, 3, 4, 5, 11, 7, 10, 3, 10, 8, 12, 6, 4, 10, 4, 8, 5, 11, 7, 5, 14, 5, 7, 4, 10, 1, 10, 9, 12, 8, 5, 10, 1, 7, 7, 6, 5
Offset: 1
Keywords
Examples
a(2) = 1 since 1*p(2)*(p(2)-1) + 1 = 1*2*1 + 1 = 3 is prime. a(6) = 1 since 3*p(6)*(p(6)-1) + 1 = 3*11*10 + 1 = 331 is prime. a(69) = 1 since 50*p(69)*(p(69)-1) + 1 = 50*3554345*3554344 + 1 = 631668241234001 is prime. a(76) = 1 since 24*p(76)*(p(76)-1) + 1 = 24*9289091*9289090 + 1 = 2070892855612561 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Crossrefs
Programs
-
Mathematica
p[n_]:=PartitionsP[n] f[n_]:=p[n]*(p[n]-1) a[n_]:=Sum[If[PrimeQ[k*f[n]+1],1,0],{k,1,n-1}] Table[a[n],{n,1,80}]
Comments