A239214 a(n) = |{0 < k < n: p(k)*p(n)*(p(n)+1) - 1 is prime}|, where p(.) is the partition function (A000041).
0, 1, 2, 3, 1, 3, 3, 2, 3, 3, 5, 4, 4, 3, 3, 6, 2, 4, 5, 4, 1, 2, 3, 6, 6, 6, 2, 4, 6, 9, 2, 7, 8, 6, 6, 2, 2, 2, 10, 4, 4, 7, 5, 7, 1, 4, 9, 9, 9, 4, 6, 8, 7, 8, 6, 4, 13, 10, 3, 6, 10, 7, 13, 12, 12, 8, 6, 8, 5, 11, 5, 3, 4, 5, 11, 7, 6, 12, 16, 4
Offset: 1
Keywords
Examples
a(2) = 1 since p(1)*p(2)*(p(2)+1) - 1 = 1*2*3 - 1 = 5 is prime. a(5) = 1 since p(3)*p(5)*(p(5)+1) - 1 = 3*7*8 - 1 = 167 is prime. a(21) = 1 since p(10)*p(21)*(p(21)+1) - 1 = 42*792*793 - 1 = 26378351 is prime. a(45) = 1 since p(20)*p(45)*(p(45)+1) - 1 = 627*89134*89135 - 1 = 4981489349429 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
p[n_]:=PartitionsP[n] f[n_]:=p[n]*(p[n]+1) a[n_]:=Sum[If[PrimeQ[p[k]*f[n]-1],1,0],{k,1,n-1}] Table[a[n],{n,1,80}]
Comments