This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239223 #23 Dec 29 2018 21:03:57 %S A239223 1,2,3,4,1,6,1,8,2,1,10,4,1,12,7,2,1,15,10,4,1,19,14,6,2,1,23,21,7,4, %T A239223 1,25,32,14,3,2,1,33,39,19,6,3,1,41,51,27,10,3,2,1,44,70,39,13,7,2,1, %U A239223 51,92,52,21,9,3,2,1,58,121,69,30,10,6,2,1,67,149 %N A239223 Number T(n,k) of partitions of n with standard deviation σ in the half-open interval [k,k+1); triangle T(n,k), n>=1, 0<=k<=max(0,floor(n/2)-1), read by rows. %H A239223 Alois P. Heinz, <a href="/A239223/b239223.txt">Rows n = 1..65, flattened</a> %H A239223 Wikipedia, <a href="https://en.wikipedia.org/wiki/Standard_deviation">Standard deviation</a> %e A239223 Triangle T(n,k) begins: %e A239223 1; %e A239223 2; %e A239223 3; %e A239223 4, 1; %e A239223 6, 1; %e A239223 8, 2, 1; %e A239223 10, 4, 1; %e A239223 12, 7, 2, 1; %e A239223 15, 10, 4, 1; %e A239223 19, 14, 6, 2, 1; %e A239223 23, 21, 7, 4, 1; %e A239223 25, 32, 14, 3, 2, 1; %p A239223 b:= proc(n, i, m, s, c) `if`(n=0, x^floor(sqrt(s/c-(m/c)^2)), %p A239223 `if`(i=1, b(0$2, m+n, s+n, c+n), add(b(n-i*j, i-1, %p A239223 m+i*j, s+i^2*j, c+j), j=0..n/i))) %p A239223 end: %p A239223 T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$3)): %p A239223 seq(T(n), n=1..18); %t A239223 b[n_, i_, m_, s_, c_] := b[n, i, m, s, c] = If[n==0, x^Floor[Sqrt[s/c - (m/c)^2]], If[i==1, b[0, 0, m+n, s+n, c+n], Sum[b[n-i*j, i-1, m+i*j, s + i^2*j, c+j], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0, 0, 0]]; Table[T[n], {n, 1, 18}] // Flatten (* _Jean-François Alcover_, Nov 17 2015, translated from Maple *) %Y A239223 Column k=0 gives A238616. %Y A239223 Row sums give A000041. %Y A239223 Maximal index in row n is A140106(n). %Y A239223 Cf. A239228. %K A239223 nonn,tabf %O A239223 1,2 %A A239223 _Alois P. Heinz_, Mar 12 2014