A239257 Number of canyon polycubes of a given volume.
1, 3, 7, 16, 35, 73, 151, 304, 604, 1198, 2362, 4637, 9117, 17954, 35350, 69760, 137959, 273213, 542015, 1076870, 2141996, 4265350, 8501015, 16954408, 33833943, 67549763, 134912857, 269532456, 538603324, 1076479708, 2151817116, 4301833827, 8600826484
Offset: 1
Keywords
Links
- Christophe Carré et al., Dirichlet convolution and enumeration of pyramid polycubes, arXiv:1311.4836 [math.CO], 2013.
- C. Carre, N. Debroux, M. Deneufchatel, J.-Ph. Dubernard, C. Hillariet, J.-G. Luque, O. Mallet, Enumeration of Polycubes and Dirichlet Convolutions, J. Int. Seq. 18 (2015) 15.11.4
Programs
-
Maple
calc2can:=proc(i, j, k, l) option remember; if (l<0) then 0 elif (i*j*k>l) then 0 elif k=1 then if (i*j=l) then 1 else 0; fi; else s:=0; a:=0; b:=0; while ((i+a)*j*(k-1)<=l-i*j) do b:=0; while ((i+a)*(j+b)*(k-1)<=l-i*j) do s:=s+binomial(i+a, a)*binomial(j+b, b)*calc2can(i+a, j+b, k-1, l-i*j); b:=b+1; od; a:=a+1; od; s; fi; end; comptec:=proc(l) s:=0; for k to l do i:=1: while (i*k<=l) do j:=1; while (i*k*j<=l) do s:=s+t^k*calc2can(i, j, k, l); j:=j+1; od: i:=i+1; od; od; s; end; enumc:=[seq(comptec(ii), ii=1..485)]: convert([seq(enumc[i]*x^i, i=1..nops(%))], `+`):seriec:=subs(t=1, %);
-
Mathematica
calc2can[i_, j_, k_, l_] := calc2can[i, j, k, l] = Module[{}, Which[l < 0, 0, i*j*k > l, 0, k == 1, If [i*j == l, 1, 0], True, s = 0; a = 0; b = 0; While[(i + a)*j*(k - 1) <= l - i*j, b = 0; While[(i + a)*(j + b)*(k - 1) <= l - i*j, s = s + Binomial[i + a, a]*Binomial[j + b, b]*calc2can[i + a, j + b, k - 1, l - i*j]; b++]; a++]; s]]; comptec[l_] := Module[{s = 0}, For[k = 1, k <= l, k++, i = 1; While[i*k <= l, j = 1; While[i*k*j <= l, s = s + t^k*calc2can[i, j, k, l]; j++]; i++] ]; s ]; Array[comptec, 40] /. t -> 1 (* Jean-François Alcover, Dec 05 2017, translated from Maple *)
Formula
If n(i,j,h,v) denotes the number of canyons of height h, volume v such that the highest plateau has volume i * j, the following recurrence relation holds: n(i,j,h,v) = sum_{0 <= a <= i} sum_{0 <= b <= j} binomial(i+a,i) binomial(j+h,j) n(i+a,j+b,h-1,v-i*j).
Comments