A239259 Number of partitions of n having (sum of odd parts) < (sum of even parts).
0, 0, 1, 1, 2, 2, 5, 7, 8, 11, 18, 26, 28, 40, 60, 83, 87, 120, 168, 230, 242, 331, 446, 592, 619, 821, 1083, 1407, 1496, 1940, 2511, 3220, 3393, 4347, 5520, 6976, 7399, 9338, 11732, 14627, 15508, 19314, 23999, 29654, 31519, 38907, 47835, 58555, 62090, 75942
Offset: 0
Examples
a(8) counts these 8 partitions: 8, 62, 611, 44, 422, 4211, 2222, 22211.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
z = 40; p[n_] := p[n] = IntegerPartitions[n]; f[t_] := f[t] = Length[t] t1 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] < n &]], {n, z}] (* A239259 *) t2 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] <= n &]], {n, z}] (* A239260 *) t3 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] == n &]], {n, z}] (* A239261 *) t4 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] > n &]], {n, z}] (* A239262 *) t5 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] >= n &]], {n, z}] (* A239263 *) (* Peter J. C. Moses, Mar 12 2014 *)