cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239260 Number of partitions of n having (sum of odd parts) <= (sum of even parts).

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 5, 7, 12, 11, 18, 26, 40, 40, 60, 83, 117, 120, 168, 230, 312, 331, 446, 592, 784, 821, 1083, 1407, 1826, 1940, 2511, 3220, 4097, 4347, 5520, 6976, 8779, 9338, 11732, 14627, 18196, 19314, 23999, 29654, 36503, 38907, 47835, 58555, 71484, 75942
Offset: 0

Views

Author

Clark Kimberling, Mar 13 2014

Keywords

Examples

			a(8) counts these 12 partitions:  8, 62, 611, 44, 431, 422, 4211, 41111, 3221, 2222, 22211, 221111.
		

Crossrefs

Programs

  • Mathematica
    z = 40; p[n_] := p[n] = IntegerPartitions[n]; f[t_] := f[t] = Length[t]
    t1 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] < n &]], {n, z}] (* A239259 *)
    t2 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] <= n &]], {n, z}] (* A239260 *)
    t3 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] == n &]], {n, z}] (* A239261 *)
    t4 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] > n &]], {n, z}] (* A239262 *)
    t5 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] >= n &]], {n, z}] (* A239263 *)
    (* Peter J. C. Moses, Mar 12 2014 *)

Formula

a(n) + A239262(n) = A000041(n).