A239260 Number of partitions of n having (sum of odd parts) <= (sum of even parts).
1, 0, 1, 1, 3, 2, 5, 7, 12, 11, 18, 26, 40, 40, 60, 83, 117, 120, 168, 230, 312, 331, 446, 592, 784, 821, 1083, 1407, 1826, 1940, 2511, 3220, 4097, 4347, 5520, 6976, 8779, 9338, 11732, 14627, 18196, 19314, 23999, 29654, 36503, 38907, 47835, 58555, 71484, 75942
Offset: 0
Examples
a(8) counts these 12 partitions: 8, 62, 611, 44, 431, 422, 4211, 41111, 3221, 2222, 22211, 221111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
z = 40; p[n_] := p[n] = IntegerPartitions[n]; f[t_] := f[t] = Length[t] t1 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] < n &]], {n, z}] (* A239259 *) t2 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] <= n &]], {n, z}] (* A239260 *) t3 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] == n &]], {n, z}] (* A239261 *) t4 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] > n &]], {n, z}] (* A239262 *) t5 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] >= n &]], {n, z}] (* A239263 *) (* Peter J. C. Moses, Mar 12 2014 *)