A239262 Number of partitions of n having (sum of odd parts) > (sum of even parts).
0, 1, 1, 2, 2, 5, 6, 8, 10, 19, 24, 30, 37, 61, 75, 93, 114, 177, 217, 260, 315, 461, 556, 663, 791, 1137, 1353, 1603, 1892, 2625, 3093, 3622, 4252, 5796, 6790, 7907, 9198, 12299, 14283, 16558, 19142, 25269, 29175, 33607, 38672, 50227, 57723, 66199, 75789
Offset: 0
Examples
a(8) counts these 10 partitions: 71, 53, 521, 5111, 332, 3311, 32111, 311111, 2111111, 11111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
z = 40; p[n_] := p[n] = IntegerPartitions[n]; f[t_] := f[t] = Length[t] t1 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] < n &]], {n, z}] (* A239259 *) t2 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] <= n &]], {n, z}] (* A239260 *) t3 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] == n &]], {n, z}] (* A239261 *) t4 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] > n &]], {n, z}] (* A239262 *) t5 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] >= n &]], {n, z}] (* A239263 *) (* Peter J. C. Moses, Mar 12 2014 *)