This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239264 #25 Nov 23 2018 06:53:00 %S A239264 1,1,1,1,0,1,1,1,1,1,1,0,3,0,1,1,1,5,5,1,1,1,0,11,0,11,0,1,1,1,21,43, %T A239264 43,21,1,1,1,0,43,0,280,0,43,0,1,1,1,85,451,1563,1563,451,85,1,1,1,0, %U A239264 171,0,9415,0,9415,0,171,0,1,1,1,341,4945,55553,162409,162409,55553,4945,341,1,1 %N A239264 Number A(n,k) of domicule tilings of a k X n grid; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A239264 A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other. %H A239264 Alois P. Heinz, <a href="/A239264/b239264.txt">Antidiagonals n = 0..36, flattened</a> %e A239264 A(3,2) = 5: %e A239264 +-----+ +-----+ +-----+ +-----+ +-----+ %e A239264 |o o-o| |o o o| |o o o| |o o o| |o-o o| %e A239264 || | || X | || | || | X || | || %e A239264 |o o-o| |o o o| |o o o| |o o o| |o-o o| %e A239264 +-----+ +-----+ +-----+ +-----+ +-----+ %e A239264 A(4,3) = 43: %e A239264 +-------+ +-------+ +-------+ +-------+ +-------+ %e A239264 |o o o o| |o o o-o| |o o-o o| |o o-o o| |o o-o o| %e A239264 || X || | X | | \ / | || || | \ || %e A239264 |o o o o| |o o o o| |o o o o| |o o o o| |o o o o| %e A239264 | | | X | || || | \ \ | || \ | %e A239264 |o-o o-o| |o-o o o| |o o-o o| |o-o o o| |o o-o o| %e A239264 +-------+ +-------+ +-------+ +-------+ +-------+ ... %e A239264 Square array A(n,k) begins: %e A239264 1, 1, 1, 1, 1, 1, 1, ... %e A239264 1, 0, 1, 0, 1, 0, 1, ... %e A239264 1, 1, 3, 5, 11, 21, 43, ... %e A239264 1, 0, 5, 0, 43, 0, 451, ... %e A239264 1, 1, 11, 43, 280, 1563, 9415, ... %e A239264 1, 0, 21, 0, 1563, 0, 162409, ... %e A239264 1, 1, 43, 451, 9415, 162409, 3037561, ... %p A239264 b:= proc(n, l) option remember; local d, f, k; %p A239264 d:= nops(l)/2; f:=false; %p A239264 if n=0 then 1 %p A239264 elif l[1..d]=[f$d] then b(n-1, [l[d+1..2*d][], true$d]) %p A239264 else for k to d while not l[k] do od; %p A239264 `if`(k<d and n>1 and l[k+d+1], %p A239264 b(n, subsop(k=f, k+d+1=f, l)), 0)+ %p A239264 `if`(k>1 and n>1 and l[k+d-1], %p A239264 b(n, subsop(k=f, k+d-1=f, l)), 0)+ %p A239264 `if`(n>1 and l[k+d], b(n, subsop(k=f, k+d=f, l)), 0)+ %p A239264 `if`(k<d and l[k+1], b(n, subsop(k=f, k+1=f, l)), 0) %p A239264 fi %p A239264 end: %p A239264 A:= (n, k)-> `if`(irem(n*k, 2)>0, 0, %p A239264 `if`(k>n, A(k, n), b(n, [true$(k*2)]))): %p A239264 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A239264 b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which [n == 0, 1, l[[1 ;; d]] == Array[f&, d], b[n-1, Join[l[[d+1 ;; 2*d]], Array[True&, d]]], True, For[k=1, !l[[k]], k++]; If[k<d && n>1 && l[[k+d+1]], b[n, ReplacePart[l, {k -> f, k+d+1 -> f}]], 0] + If[k>1 && n>1 && l[[k+d-1]], b[n, ReplacePart[l, {k -> f, k+d-1 -> f}]], 0] + If[n>1 && l[[k+d]], b[n, ReplacePart[l, {k -> f, k+d -> f}]], 0] + If[k<d && l[[k+1]], b[n, ReplacePart[l, {k -> f, k+1 -> f}]], 0]]]; A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Feb 02 2015, after _Alois P. Heinz_ *) %Y A239264 Columns (or rows) k=0-10 give: A000012, A059841, A001045(n+1), A239265, A239266, A239267, A239268, A239269, A239270, A239271, A239272. %Y A239264 Bisection of main diagonal gives: A239273. %Y A239264 Cf. A099390, A187616, A187617, A187596, A220644. %K A239264 nonn,tabl %O A239264 0,13 %A A239264 _Alois P. Heinz_, Mar 13 2014