This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239273 #29 Feb 16 2025 08:33:21 %S A239273 1,3,280,3037561,3263262629905,326207195516663381931, %T A239273 3011882198082438957330143630563, %U A239273 2565014347691062208319404612723752103028288,201442620359313683494245316355883565275531844406384955392,1458834332808489549111708247664894524221330758005874053074138540424018259 %N A239273 Number of domicule tilings of a 2n X 2n square grid. %C A239273 A domicule is either a domino or it is formed by the union of two neighboring unit squares connected via their corners. In a tiling the connections of two domicules are allowed to cross each other. %C A239273 Number of perfect matchings in the 2n X 2n kings graph. - _Andrew Howroyd_, Apr 07 2016 %H A239273 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %H A239273 Wikipedia, <a href="https://en.wikipedia.org/wiki/King%27s_graph">King's graph</a> %F A239273 a(n) = A239264(2n,2n). %e A239273 a(1) = 3: %e A239273 +---+ +---+ +---+ %e A239273 |o o| |o o| |o-o| %e A239273 || || | X | | | %e A239273 |o o| |o o| |o-o| %e A239273 +---+ +---+ +---+. %e A239273 a(2) = 280: %e A239273 +-------+ +-------+ +-------+ +-------+ +-------+ %e A239273 |o o o-o| |o o o-o| |o-o o-o| |o o o o| |o o-o o| %e A239273 | X | | X | | | | X | || | \ / | %e A239273 |o o o o| |o o o o| |o o o o| |o o o o| |o o o o| %e A239273 | / || | / / | || X || | | || || %e A239273 |o o o o| |o o o o| |o o o o| |o-o o o| |o o o o| %e A239273 || \ | || || | | | X | | / / | %e A239273 |o o-o o| |o o-o o| |o-o o-o| |o-o o o| |o o o-o| %e A239273 +-------+ +-------+ +-------+ +-------+ +-------+ ... %t A239273 b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, f = False, k}, Which[n == 0, 1, l[[1 ;; d]] == Array[f &, d], b[n - 1, Join[l[[d + 1 ;; 2*d]], Array[True &, d]]], True, For[k = 1, ! l[[k]], k++]; If[k < d && n > 1 && l[[k + d + 1]], b[n, ReplacePart[l, {k -> f, k + d + 1 -> f}]], 0] + If[k > 1 && n > 1 && l[[k + d - 1]], b[n, ReplacePart[l, {k -> f, k + d - 1 -> f}]], 0] + If[n > 1 && l[[k + d]], b[n, ReplacePart[l, {k -> f, k + d -> f}]], 0] + If[k < d && l[[k + 1]], b[n, ReplacePart[l, {k -> f, k + 1 -> f}]], 0]]]; %t A239273 A[n_, k_] := If[Mod[n*k, 2]>0, 0, If[k>n, A[k, n], b[n, Array[True&, k*2]]]]; %t A239273 a[n_] := A[2n, 2n]; %t A239273 Table[Print[n]; a[n], {n, 0, 7}] (* _Jean-François Alcover_, Sep 16 2019, after _Alois P. Heinz_ in A239264 *) %Y A239273 Even bisection of main diagonal of A239264. %Y A239273 Cf. A004003, A243510, A243424, A220638. %K A239273 nonn %O A239273 0,2 %A A239273 _Alois P. Heinz_, Mar 13 2014 %E A239273 a(8) from _Alois P. Heinz_, Sep 30 2014 %E A239273 a(9) from _Alois P. Heinz_, Nov 23 2018