This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239275 #54 Jun 26 2025 14:03:34 %S A239275 1,1,2,0,-8,0,32,0,-128,0,2560,0,-1415168,0,57344,0,-118521856,0, %T A239275 5749735424,0,-91546451968,0,1792043646976,0,-1982765704675328,0, %U A239275 286994513002496,0,-3187598700536922112,0,4625594563496048066560,0,-16555640873195841519616,0,22142170101965089931264,0 %N A239275 a(n) = numerator(2^n * Bernoulli(n, 1)). %C A239275 Difference table of f(n) = 2^n *A164555(n)/A027642(n) = a(n)/A141459(n): %C A239275 1, 1, 2/3, 0, -8/15, 0, 32/21, 0,... %C A239275 0, -1/3, -2/3, -8/15, 8/15, 32/21, -32/21,... %C A239275 -1/3, -1/3, 2/15, 16/15, 104/105, -64/21,... %C A239275 0, 7/15, 14/15, -8/105, -424/105,... %C A239275 7/15, 7/15, -106/105, -416/105,... %C A239275 0, -31/21, -62/31, %C A239275 -31/21, -31/21,... %C A239275 0,... etc. %C A239275 Main diagonal: A212196(n)/A181131(n). See A190339(n). %C A239275 First upper diagonal: A229023(n)/A181131(n). %C A239275 The inverse binomial transform of f(n) is g(n). Reciprocally, the inverse binomial transform of g(n) is f(n) with -1 instead of f(1)=1, i.e., f(n) signed. %C A239275 Sum of the antidiagonals: 1,1,0,-1,0,3,0,-17,... = (-1)^n*A036968(n) = -A226158(n+1). %C A239275 Following A211163(n+2), f(n) is the coefficients of a polynomial in Pi^n. %C A239275 Bernoulli numbers, twice, and Genocchi numbers, twice, are linked to Pi. %C A239275 f(n) - g(n) = -A226158(n). %C A239275 Also the numerators of the centralized Bernoulli polynomials 2^n*Bernoulli(n, x/2+1/2) evaluated at x=1. The denominators are A141459. - _Peter Luschny_, Nov 22 2015 %C A239275 (-1)^n*a(n) = 2^n*numerator(A027641(n)/A027642(n)) (that is the present sequence with a(1) = -1 instead of +1). - _Wolfdieter Lang_, Jul 05 2017 %H A239275 Vincenzo Librandi, <a href="/A239275/b239275.txt">Table of n, a(n) for n = 0..200</a> %H A239275 Wolfdieter Lang, <a href="https://arXiv.org/abs/1707.04451">On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers</a>, arXiv:math/1707.04451 [math.NT], July 2017. See B(2;n), eq. (53). %F A239275 a(n) = numerators of 2^n * A164555(n)/A027642(n). %F A239275 Numerators of the binomial transform of A157779(n)/(interleave A001897(n), 1)(conjectured). %p A239275 seq(numer(2^n*bernoulli(n, 1)), n=0..35); # _Peter Luschny_, Jul 17 2017 %t A239275 Table[Numerator[2^n*BernoulliB[n, 1]], {n, 0, 100}] (* _Indranil Ghosh_, Jul 18 2017 *) %o A239275 (Python) %o A239275 from sympy import bernoulli %o A239275 def a(n): return (2**n * bernoulli(n, 1)).numerator %o A239275 print([a(n) for n in range(51)]) # _Indranil Ghosh_, Jul 18 2017 %Y A239275 Cf. A141459 (denominators), A001896/A001897, A027641/A027642. %K A239275 sign,frac,easy %O A239275 0,3 %A A239275 _Paul Curtz_, Mar 13 2014