This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239284 #46 May 31 2024 14:42:34 %S A239284 0,1,14,211,3164,47461,711914,10678711,160180664,2402709961, %T A239284 36040649414,540609741211,8109146118164,121637191772461, %U A239284 1824557876586914,27368368148803711,410525522232055664,6157882833480834961,92368242502212524414,1385523637533187866211 %N A239284 a(n) = (15^n - (-1)^n)/16. %C A239284 Let k and t be positive integers and consider a(n) = k*a(n-1)+t*a(n-2) for n>=2, with a(0)=0, a(1)=1. %C A239284 The roots of its characteristic equation are r1 = (k+sqrt(k^2+4t))/2 and r2 =(k-sqrt(k^2+4t))/2. Hence, the solution to the recurrence relation is the sequence {a(n)} where a(n) = alpha1*r1^n + alpha2*r2^n. It can be shown that alpha1 = 1/sqrt(k^2+4t) and alpha2 = -alpha1. It can be shown also that |r2/r1|< 1. Thus, the ratio a(n+1)/a(n) converges to r as n approaches infinity. %C A239284 Note that limit a(n+1)/a(n) = 15 as n approaches infinity with k=14 and t=15. %C A239284 If n > 15 then | a(n+1)/a(n) - 15 | < 10^(-16). %C A239284 The number of walks of length n between any two distinct vertices of the complete graph K_16. - _Peter Bala_, May 30 2024 %H A239284 G. C. Greubel, <a href="/A239284/b239284.txt">Table of n, a(n) for n = 0..849</a> %H A239284 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,15). %F A239284 G.f.: x/(1 - 14*x - 15*x^2). %F A239284 a(n) = 14*a(n-1) + 15*a(n-2) for n > 1, a(0) = 0, a(1) = 1. %F A239284 a(n) = (1/16)*(15^n - (-1)^n). %F A239284 a(n) = (1/16)*( A001024(n) - A033999(n) ). %F A239284 E.g.f.: (exp(15*x) - exp(-x))/16. - _G. C. Greubel_, May 26 2018 %t A239284 CoefficientList[Series[x/(1-14*x-15*x^2), {x,0,50}], x] (* or *) Table[ (15^n - (-1)^n)/16, {n,0,30}] (* or *) LinearRecurrence[{14,15}, {0,1}, 30] (* _G. C. Greubel_, May 26 2018 *) %o A239284 (PARI) a(n) = (15^n - (-1)^n)/16; \\ _Michel Marcus_, Mar 16 2014 %o A239284 (PARI) my(x='x+O('x^30)); concat([0], Vec(x/(1 -14*x - 15*x^2))) \\ _G. C. Greubel_, May 26 2018 %o A239284 (Magma) [(15^n - (-1)^n)/16: n in [0..30]]; // _G. C. Greubel_, May 26 2018 %Y A239284 Cf. A062160 (row 15). %K A239284 nonn,easy %O A239284 0,3 %A A239284 _Felix P. Muga II_, Mar 14 2014