This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239288 #24 Jun 13 2015 00:54:59 %S A239288 0,1,2,4,6,10,15,22,33,48,69,102,147,210,309,444,633,930,1335,1902, %T A239288 2793,4008,5709,8382,12027,17130,25149,36084,51393,75450,108255, %U A239288 154182,226353,324768,462549,679062,974307,1387650,2037189,2922924,4162953,6111570 %N A239288 Maximal sum of x0 + x0*x1 + ... + x0*x1*...*xk over all compositions x0 + ... + xk = n. %C A239288 This sequence comes up in the analysis of exact algorithms for maximum independent sets. %H A239288 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,3,-3). %F A239288 a(0) = 0, a(n) = max{k + k*a(n - k) | 1 <= k <= n}. %F A239288 For n >= 8 the solution becomes cyclic: a(3n + k) = 3 + 3a(3n - 3 + k). %F A239288 G.f.: -x*(x^2+x+1)*(x^5-2*x^4+2*x^3-x^2-1) / ((x-1)*(3*x^3-1)). - _Joerg Arndt_ %e A239288 For n = 4 there are three solutions, all summing to 6: 3+3*1, 2+2*1+2*1*1, 2+2*2. %e A239288 For n = 7 there is only one solution: 2 + 2*2 + 2*2*2 + 2*2*2*1. %p A239288 mulprod := proc(L) %p A239288 local i,k ; %p A239288 add(mul(op(k,L),k=1..i),i=1..nops(L)) ; %p A239288 end proc: %p A239288 A239288 := proc(n) %p A239288 a := 0 ; %p A239288 for pa in combinat[partition](n) do %p A239288 for pe in combinat[permute](pa) do %p A239288 f := mulprod(pe) ; %p A239288 a := max(a,f) ; %p A239288 end do: %p A239288 end do: %p A239288 return a; %p A239288 end proc: # _R. J. Mathar_, Jul 03 2014 %K A239288 nonn,easy %O A239288 0,3 %A A239288 _Thomas Dybdahl Ahle_, Jun 13 2014