cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239302 Triangular array: T(n,k) = number of partitions x(1) > x(2) > ... > x(k) of n+2 such that x(1) = x(2) + k, for n >= 1.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 0, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 5, 4, 3, 3, 2, 2, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 14 2014

Keywords

Comments

The columns are identical, and the limit of the reversal of rows is A087897(n+3).
Sum of row n equals A111133(n+3).

Examples

			First 17 rows:
1
0 1
1 0 1
1 1 0 1
1 1 1 0 1
1 1 1 1 0 1
2 1 1 1 1 0 1
2 2 1 1 1 1 0 1
2 2 2 1 1 1 1 0 1
3 2 2 2 1 1 1 1 0 1
3 3 2 2 2 1 1 1 1 0 1
4 3 3 2 2 2 1 1 1 1 0 1
5 4 3 3 2 2 2 1 1 1 1 0 1
5 5 4 3 3 2 2 2 1 1 1 1 0 1
6 5 5 4 3 3 2 2 2 1 1 1 1 0 1
8 6 5 5 4 3 3 2 2 2 1 1 1 1 0 1
8 8 6 5 5 4 3 3 2 2 2 1 1 1 1 0 1
To account for row 7, start with the strict partitions (A000009) of 9 that have more than one part:  81, 72, 63, 621, 54, 531, 432.  Next, form (part 1) - (part 2) for each of those partitions, getting 7, 5, 3, 4, 1, 2, 1; finally, note that the numbers of occurrences of 1,2,3,4,5,6,7, respectively, are 2,1,1,1,1,0,1.
		

Crossrefs

Programs

  • Mathematica
    z = 25; d[n_] := d[n] = Rest[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &]]; t[n_] := t[n] = Table[d[n][[k, 1]] - d[n][[k, 2]], {k, 1, -1 + PartitionsQ[n]}]; u = Table[Count[t[n], j], {n, 3, z}, {j, 1, n - 2}]; TableForm[u] (* A239302 as an array *)
    v = Flatten[u]  (* A239302 as a sequence *)