cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239303 Triangle of compressed square roots of Gray code * bit-reversal permutation.

This page as a plain text file.
%I A239303 #32 Dec 17 2017 03:17:26
%S A239303 1,3,1,6,1,5,6,9,1,10,12,18,1,17,10,12,18,33,1,34,20,24,36,66,1,65,34,
%T A239303 20,24,36,66,129,1,130,68,40,48,72,132,258,1,257,130,68,40,48,72,132,
%U A239303 258,513,1,514,260,136,80
%N A239303 Triangle of compressed square roots of Gray code * bit-reversal permutation.
%C A239303 The permutation that turns a natural ordered into a sequency ordered Walsh matrix of size 2^n is the product of the Gray code permutation A003188(0..2^n-1) and the bit-reversal permutation A030109(n,0..2^n-1).
%C A239303 (This permutation of 2^n elements can be represented by the compression vector [2^(n-1), 3*[2^(n-2)..4,2,1]] with n elements.)
%C A239303 This triangle shows the compression vectors of the unique square roots of these permutations, which correspond to symmetric binary matrices with 2n-1 ones.
%C A239303 (These n X n matrices correspond to graphs that can be described by permutations of n elements, which are shown in A239304.)
%C A239303 Rows of the square array:
%C A239303 T(1,n) = 1,3,6,6,12,12,24,24,48,48,96,96,192,192,384,384,... (compare A003945)
%C A239303 T(2,n) = 1,1,9,18,18,36,36,72,72,144,144,288,288,576,576,... (compare A005010)
%C A239303 Columns of the square array:
%C A239303 T(m,1) = 1,1,5,10,10,20,20,40,40,80,80,160,160,320,320,... (compare A146523)
%C A239303 T(m,2) = 3,1,1,17,34,34,68,68,136,136,272,272,544,544,... (compare A110287)
%H A239303 Tilman Piesk, <a href="/A239303/b239303.txt">First 140 rows of the triangle, flattened</a>
%H A239303 Tilman Piesk, <a href="https://en.wikiversity.org/wiki/Walsh_permutation;_sequency_ordered_Walsh_matrix">Sequency ordered Walsh matrix</a> (Wikiversity)
%H A239303 Tilman Piesk, <a href="http://pastebin.com/XDhZLaGy">Calculation in MATLAB</a>
%e A239303 Triangular array begins:
%e A239303    1
%e A239303    3   1
%e A239303    6   1   5
%e A239303    6   9   1  10
%e A239303   12  18   1  17  10
%e A239303   12  18  33   1  34  20
%e A239303 Square array begins:
%e A239303    1   3   6   6  12  12
%e A239303    1   1   9  18  18  36
%e A239303    5   1   1  33  66  66
%e A239303   10  17   1   1 129 258
%e A239303   10  34  65   1   1 513
%e A239303   20  34 130 257   1   1
%e A239303 The Walsh permutation wp(8,12,6,3) = (0,8,12,4, 6,14,10,2, 3,11,15,7, 5,13,9,1) permutes the natural ordered into the sequency ordered Walsh matrix of size 2^4.
%e A239303 Its square root is wp(6,9,1,10) = (0,6,9,15, 1,7,8,14, 10,12,3,5, 11,13,2,4).
%e A239303 So row 4 of the triangular array is (6,9,1,10).
%Y A239303 Cf. A239304, A003188, A030109.
%K A239303 nonn,tabl
%O A239303 1,2
%A A239303 _Tilman Piesk_, Mar 14 2014