cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239313 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the odd numbers interleaved with k-1 zeros, except the first column which lists 0 together with the nonnegative integers, and the first element of column k is in row k*(k+1)/2.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 3, 3, 4, 0, 1, 5, 5, 0, 6, 0, 0, 7, 7, 3, 8, 0, 0, 1, 9, 9, 0, 0, 10, 0, 5, 0, 11, 11, 0, 0, 12, 0, 0, 3, 13, 13, 7, 0, 1, 14, 0, 0, 0, 0, 15, 15, 0, 0, 0, 16, 0, 9, 5, 0, 17, 17, 0, 0, 0, 18, 0, 0, 0, 3, 19, 19, 11, 0, 0, 1, 20, 0, 0, 7, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Mar 15 2014

Keywords

Comments

Alternating row sums give the Chowla's function, i.e., sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A048050(n).
Row n has length A003056(n) hence column k starts in row A000217(k).
Column 1 gives 0 together with A001477.
Column 2 is A193356.
The number of positive terms in row n is A001227(n), if n >= 3. - Omar E. Pol, Apr 18 2016

Examples

			Triangle begins (row n = 1..24):
0;
0;
1,   1;
2,   0;
3,   3;
4,   0,  1;
5,   5,  0;
6,   0,  0;
7,   7,  3;
8,   0,  0,  1;
9,   9,  0,  0;
10,  0,  5,  0;
11, 11,  0,  0;
12,  0,  0,  3;
13, 13,  7,  0,  1;
14,  0,  0,  0,  0;
15, 15,  0,  0,  0;
16,  0,  9,  5,  0;
17, 17,  0,  0,  0;
18,  0,  0,  0,  3;
19, 19, 11,  0,  0,  1;
20,  0,  0,  7,  0,  0;
21, 21,  0,  0,  0,  0;
22,  0, 13,  0,  0,  0;
...
For n = 15 the divisors of 15 are 1, 3, 5, 15 therefore the sum of divisors of 15 except 1 and 15 is 3 + 5 = 8. On the other hand the 15th row of triangle is 13, 13, 7, 0, 1, hence the alternating row sum is 13 - 13 + 7 - 0 + 1 = 8, equalling the sum of divisors of 15 except 1 and 15.
If n is even then the alternating sum of the n-th row of triangle is simpler than the sum of divisors of n, except 1 and n. Example: the sum of divisors of 24 except 1 and 24 is 2 + 3 + 4 + 6 + 8 + 12 = 35, and the alternating sum of the 24th row of triangle is 22 - 0 + 13 - 0 + 0 - 0 = 35.
		

Crossrefs

Formula

T(n,k) = A196020(n,k), if k >= 2. - Omar E. Pol, Apr 18 2016