This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239315 #11 Apr 11 2014 06:44:08 %S A239315 15,15,15,105,105,105,21,105,105,21,105,105,105,105,105,15,105,105, %T A239315 105,105,15,165,165,1155,231,1155,165,165,33,165,165,231,231,165,165, %U A239315 33,15015,15015,15015,15015,15015,15015,15015,15015,15015 %N A239315 Array read by antidiagonals: denominators of the core of the classical Bernoulli numbers. %C A239315 We consider the autosequence A164555(n)/A027642(n) (see A190339(n)) and its difference table without the first two rows and the first two columns: %C A239315 2/15, 1/15, -1/105, -1/21, -1/105, 1/15, 7/165, -5/33,... %C A239315 -1/15, -8/105, -4/105, 4/105, 8/105, -4/165, -32/165,... %C A239315 -1/105, 4/105, 8/105, 4/105, -116/1155, -28/165,... %C A239315 1/21, 4/105, -4/105, -32/231, -16/231,... %C A239315 -1/105, -8/105, -116/1155, 16/231,... %C A239315 -1/15, -4/165, 28/165,... %C A239315 7/165, 32/165,... %C A239315 5/33,... etc. %C A239315 This is an autosequence of the second kind. %C A239315 The antidiagonals are palindromes in absolute values. %C A239315 a(n) are the denominators. Multiples of 3. %C A239315 Sum of odd antidiagonals: 2/15, -2/21, 2/15, -10/33, 1382/1365,... = -2*A000367(n+2)/A001897(n+2). %C A239315 The sum of the even antidiagonals is A000004. %C A239315 2/15, 0, -2/21,... = -4*A027641(n+4)/A027642(n+4) = -4*A164555(n)/A027642(n+4) and others. %e A239315 As a triangle: %e A239315 15, %e A239315 15, 15, %e A239315 105, 105, 105, %e A239315 21, 105, 105, 21, %e A239315 105, 105, 105, 105, 105, %e A239315 etc. %t A239315 max = 12; tb = Table[BernoulliB[n], {n, 0, max}]; td = Table[Differences[tb, n][[3 ;; -1]], {n, 2, max - 1}]; Table[td[[n - k + 1, k]] // Denominator, {n, 1, max - 3}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Apr 11 2014 *) %Y A239315 Cf. A085737/A085738, A168516/A168426 (autosequence), A027641, A176327/A176289, A235774, A165161/A051717(n+1). %K A239315 nonn,tabl,frac %O A239315 0,1 %A A239315 _Paul Curtz_, Mar 15 2014