This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239320 #52 May 28 2020 05:27:16 %S A239320 1,3,9,13,17,23,25,27,31,35,37,39,47,51,53,59,61,65,69,71,73,75,77,79, %T A239320 81,85,89,91,93,101,105,107,109,111,117,137,141,143,153,155,159,161, %U A239320 167,169,173,177,179,181,183,185,187,191,195,197,207,209,213 %N A239320 Ternary happy numbers. %C A239320 Numbers where the trajectory of iterated application of A006287 ends at the fixed point 1. %H A239320 Amiram Eldar, <a href="/A239320/b239320.txt">Table of n, a(n) for n = 1..10000</a> %H A239320 H. G. Grundmann, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Grundman/grundman7.html">Semihappy Numbers</a>, J. Int. Seq. 13 (2010), 10.4.8. %e A239320 13 is a ternary happy number because 13=111_3 -> 1 + 1 + 1 = 3 = 10_3 -> 1 + 0 = 1. %p A239320 isA239320 := proc(n) %p A239320 t := A006287(n) ; %p A239320 tloo := {} ; %p A239320 for i from 1 do %p A239320 if t = 1 then %p A239320 return true; %p A239320 end if; %p A239320 if t in tloo then %p A239320 return false; %p A239320 end if; %p A239320 tloo := tloo union {t} ; %p A239320 t := A006287(t) ; %p A239320 end do: %p A239320 end proc: %p A239320 for n from 1 to 300 do %p A239320 if isA239320(n) then %p A239320 printf("%d,",n) ; %p A239320 end if; %p A239320 end do: # _R. J. Mathar_, Jun 13 2014 %t A239320 happyQ[n_, b_] := NestWhile[Plus @@ (IntegerDigits[#, b]^2) &, n, UnsameQ, All] == 1; Select[Range[213], happyQ[#, 3] &] (* _Amiram Eldar_, May 28 2020 *) %Y A239320 Cf. A007770, A240849. %K A239320 nonn,base,easy %O A239320 1,2 %A A239320 _Jiri Klepl_, Apr 13 2014