This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239321 #18 May 22 2025 10:21:37 %S A239321 1,2,10,16,22,28,34,36,40,46,50,51,52,56,57,58,64,66,70,76,78,82,86, %T A239321 87,88,92,93,94,96,100,101,106,112,116,117,118,120,124,126,130,134, %U A239321 135,136,142,144,146,147,148,154,156,160,162,166,170,171,172,176,177 %N A239321 Numbers n such that n - k! is never prime; or A175940(n) = 0. %H A239321 Giovanni Resta, <a href="/A239321/b239321.txt">Table of n, a(n) for n = 1..10000</a> %e A239321 51 - 0! = 51 - 1! = 50 is not prime. 51 - 2! = 49 is not prime. 51 - 3! = 45 is not prime. 51 - 4! = 27 is not prime. For k >= 5, 51 - k! is negative and thus not prime. Hence 51 is a member of this sequence since 51 - k! is not prime for any k. %o A239321 (Python) %o A239321 import sympy %o A239321 from sympy import isprime %o A239321 import math %o A239321 def Prf(x): %o A239321 count = 0 %o A239321 for i in range(x): %o A239321 if isprime(x-math.factorial(i)): %o A239321 count += 1 %o A239321 return count %o A239321 x = 1 %o A239321 while x < 10**3: %o A239321 if Prf(x) == 0: %o A239321 print(x) %o A239321 x += 1 %o A239321 (PARI) isok(n) = {k = 0; while (((nmk =(n - k!)) > 0), if (isprime(nmk), return (0)); k++;); return (1);} \\ _Michel Marcus_, Mar 16 2014 %Y A239321 Cf. A175940, A125163. %K A239321 nonn %O A239321 1,2 %A A239321 _Derek Orr_, Mar 15 2014