This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A239325 #23 May 11 2019 09:58:24 %S A239325 1,15,41,79,129,191,265,351,449,559,681,815,961,1119,1289,1471,1665, %T A239325 1871,2089,2319,2561,2815,3081,3359,3649,3951,4265,4591,4929,5279, %U A239325 5641,6015,6401,6799,7209,7631,8065,8511,8969,9439,9921,10415,10921,11439,11969 %N A239325 a(n) = 6*n^2 + 8*n + 1. %C A239325 Binomial transform of 1, 14, 12, 0, 0, 0 (0 continued). %C A239325 Sum_{n>=0} 1/a(n) = (Psi(0,(4+sqrt(10))/6) - Psi(0,(4-sqrt(10))/6))/(2*sqrt(10)) = 1.14373625509612753878..., where Psi(n,k) is the n^th derivative of the digamma function. - _Bruno Berselli_, Mar 16 2014 %H A239325 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A239325 G.f.: (1 + 12*x - x^2)/(1-x)^3. %F A239325 a(0) = 1, a(1) = 15, a(2) = 41; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A239325 a(n) = C(n,0) + 14*C(n,1) + 12*C(n,2). %F A239325 a(n) = (A069133(n+1) + A100536(n+1) - A000290(n))/2. %F A239325 a(n) = A139267(n+1) - 1. - _Yuriy Sibirmovsky_, Oct 04 2016 %e A239325 a(0) = 1*1 = 1; %e A239325 a(1) = 1*1 + 14*1 = 15; %e A239325 a(2) = 1*1 + 14*2 + 12*1 = 41; %e A239325 a(3) = 1*1 + 14*3 + 12*3 = 79; %e A239325 a(4) = 1*1 + 14*4 + 12*6 = 129; etc. %t A239325 Table[6 n^2 + 8 n + 1, {n, 0, 44}] (* or *) %t A239325 CoefficientList[Series[(1 + 12 x - x^2)/(1 - x)^3, {x, 0, 44}], x] (* _Michael De Vlieger_, Oct 04 2016 *) %t A239325 LinearRecurrence[{3,-3,1},{1,15,41},50] (* _Harvey P. Dale_, May 11 2019 *) %o A239325 (PARI) a(n)=6*n^2+8*n+1 \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A239325 Cf. A069133, A100536, A139267. %K A239325 nonn,easy %O A239325 0,2 %A A239325 _Philippe Deléham_, Mar 16 2014