cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239329 The number of NE partitions of n (see Comments).

Original entry on oeis.org

1, 2, 3, 4, 7, 9, 14, 19, 27, 36, 51, 67, 90, 117, 157, 204, 266, 337, 436, 554, 708, 890, 1123, 1401, 1750, 2172, 2701, 3329, 4106, 5026, 6161, 7507, 9147, 11095, 13455, 16245, 19597, 23555, 28288, 33867, 40514, 48328, 57590, 68456, 81286, 96286, 113947
Offset: 1

Views

Author

Clark Kimberling, Mar 19 2014

Keywords

Comments

Directional partitions are defined at A237981, and NE partitions are shown at A237982. a(n) is also the number of SW partitions of n, as at A237982.

Examples

			See A237982.
		

Crossrefs

Programs

  • Mathematica
    z = 9; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]}; Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] :=  Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &, Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
    Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]];(*NW A237981*)
    Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]];(*NE A237982*)
    Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]];(*SE A237983*)
    Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]];(*SW A237982*)
    m1 = Map[cP[[#, 1]] &, Range[Length[cP]]];
    Table[Length[m1[[k]]], {k, 1, z}] (* A003114, NW *)
    m2 = Map[cP[[#, 2]] &, Range[Length[cP]]];
    Table[Length[m2[[k]]], {k, 1, z}] (* A239329, NE *)
    m3 = Map[cP[[#, 3]] &, Range[Length[cP]]];
    Table[Length[m3[[k]]], {k, 1, z}] (* A122129, SE *)
    m4 = Map[cP[[#, 4]] &, Range[Length[cP]]];
    Table[Length[m4[[k]]], {k, 1, z}] (* A239329, SW *)