cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239349 Decimal expansion of prime version of Ramanujan's infinite nested radical.

This page as a plain text file.
%I A239349 #35 May 16 2025 07:29:32
%S A239349 9,4,0,5,0,4,3,6,1,2,4,4,5,2,1,7,5,7,8,1,3,7,6,3,3,7,4,2,9,7,8,6,0,0,
%T A239349 5,7,9,4,1,8,7,5,6,5,2,2,5,9,0,2,3,6,3,9,6,5,9,2,2,1,7,2,1,8,5,6,0,6,
%U A239349 8,5,9,4,2,4,2,2,1,9,9,1,2,9,8,7,3,7,7,4,0,1,4,1,0,4,9,2,9,0,6,2,8,5,5,8,9,1,8,2,6,9
%N A239349 Decimal expansion of prime version of Ramanujan's infinite nested radical.
%C A239349 Replace each factor n = 1, 2, 3, ... with prime(n) = 2, 3, 5, ... in Ramanujan's infinite nested radical 1*sqrt(1 + 2*sqrt(1 + 3*sqrt(1 + ...))) = 3, obtaining 2*sqrt(1 + 3*sqrt(1 + 5*sqrt(1 + ...))) = 9.405043....
%C A239349 Converges by Vijayaraghavan's test or Herschfeld's test, together with the Prime Number Theorem. - _Petros Hadjicostas_ and _Jonathan Sondow_, Mar 23 2014
%D A239349 S. Ramanujan, J. Indian Math. Soc., III (1911), 90 and IV (1912), 226.
%D A239349 T. Vijayaraghavan, in Collected Papers of Srinivasa Ramanujan, G. H. Hardy, P. V. Seshu Aiyar and B. M. Wilson, eds., Cambridge Univ. Press, 1927, p. 348; reprinted by Chelsea, 1962.
%H A239349 G. C. Greubel, <a href="/A239349/b239349.txt">Table of n, a(n) for n = 1..1000</a>
%H A239349 A. Herschfeld, <a href="http://www.jstor.org/stable/2301294">On Infinite Radicals</a>, Amer. Math. Monthly, 42 (1935), 419-429.
%H A239349 Jonathan Sondow and Petros Hadjicostas, <a href="http://dx.doi.org/10.1016/j.jmaa.2006.09.081">The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant</a>, J. Math. Anal. Appl., 332 (2007), 292-314; see pp. 305-306.
%H A239349 Wikipedia, <a href="http://en.wikipedia.org/wiki/Tirukkannapuram_Vijayaraghavan">Tirukkannapuram Vijayaraghavan</a>.
%F A239349 Equals 2*sqrt(1 + 3*sqrt(1 + 5*sqrt(1 + 7*sqrt(1 + 11*sqrt(1 + ...))))).
%F A239349 Equals lim_{n->oo} 2*sqrt(1 + 3*sqrt(1 + 5*sqrt(1 + ... + prime(n)*sqrt(1)))).
%F A239349 sqrt(4 + sqrt(144 + sqrt(129600 + ...))) = sqrt(A(1) + sqrt(A(2) + sqrt(A(3) + ...))), where A = A239350 = superprimorials squared.
%e A239349 9.4050436124452175781376337429786005794187565225902363965922...
%t A239349 RealDigits[ Fold[ #2*Sqrt[ 1 + #1] &, 0, Reverse[ Prime[ Range[ 400]]]], 10, 110][[1]]
%Y A239349 Cf. A105546, A239350.
%K A239349 cons,nonn
%O A239349 1,1
%A A239349 _Jonathan Sondow_, Mar 16 2014